

275

 8

Chapter 8: IIoT (Industrial
Internet of Things)
In this Chapter…
8.1 IIoT (Industrial Internet of Things) 276
 8.1.1 MQTT .. 277
8.2 MQTT Essentials ... 280
 8.2.1 Basic Concepts .. 280
 8.2.2 MQTT More details and Examples 282
8.3 Basic MQTT Setup on EZLogix ... 294
8.4 Broker Setup ... 296
8.5 EZLogix IIoT (MQTT) Example ... 298
8.6 MQTT HIVEMQ Essentials ... 302
8.7 EZ-IIoT Subscriber Utility .. 307

8.7.1 Install EZ-IIoT Subscriber Utility................................... 307
8.7.2 EZ-IIoT Subscriber Utility Setup ……………………………..… 308
8.7.3 EZ-IIoT Subscriber Utility Function ………………………..…. 310
8.7.4 EZ-IIoT Subscriber Utility Best Practices ……………..……. 319

EZAutomation

276

8.1 IIOT (Industrial Internet of Things)
The EZLogix PLC supports the Industrial Internet of Things. The EZLogix PLC comes with a built in
instruction that allows the user to publish data to secure offsite MQTT Cloud Broker. This
capability allows the EZLogix PLC to provide data for analysis to improve efficiency, troubleshoot
problems, and do preventative maintenance. This section explores in more depth what IIoT
(Industrial Internet of Things) means, how the EZLogix supports IIoT through the MQTT protocol,
and finally looks at how to setup the EZLogix to do MQTT communication.

What is IIoT (Industrial Internet of Things)?
The Industrial Internet of Things (IIoT) focuses on the interconnectivity and utilization of
powerful data in a manufacturing environment. IIoT enables the acquisition and accessibility of
important plant data at far greater speeds, security and reliability. IIoT incorporates machine
learning and big data technology, harnessing the sensor data, machine-to-machine
communication and automation technologies that have existed in industrial settings for years.
The driving philosophy behind the IIoT is that smart machines are better than humans at
accurately, consistently capturing and communicating data.

EZLogix built in IIoT and MQTT protocol support acts as a "bridge" between existing operational
technology within a plant, for example factory machines, and plant database networks, so
valuable data can be shared reliably and securely to improve plant productivity and efficiency.

How EZLogix Support “Edge-Gateway” Communications and IIoT?
The EZLogix PLC operates as an “Edge-of-Network” or “Edge-Gateway” device with direct
connectivity to external devices such as sensors, RTDs, analog inputs, etc. and easy to setup
secure communications with other networks such as Modbus TCP/IP. Through the use of the
MQTT protocol it can publish up to 80 tags of data per EZLogix CPU, thus providing a subscriber
pertinent real time data from these external devices. The use of the MQTT protocol allows for
great interoperability since it is becoming an industry standard. It also allows for great security
through the broker. It must also be noted that with the EZLogix PLC, a “security breach” to
access the machine is not of any concern since there is no backwards flow of data. That is data is
only ever published from the PLC. It will never accept any data or commands back from any
server, broker or client.

277

8.1.1 MQTT
What is MQTT?
MQTT which stands for message queuing telemetry transport, is a standard Client Server
publish/subscribe messaging transport protocol that is quickly becoming the leading messaging
protocol for the Industrial Internet of Things (IIoT).

How does MQTT work?
The MQTT protocol works on a publish/subscribe (pub/sub) pattern. This is different from a
traditional client-server model in that the machine (PLC) does not directly communicate to the
server. The Pub/Sub pattern decouples a client that is publishing data (sending messages) from
the client that is subscribing to the data (receiving messages). For this pattern the sender of
messages is called the publisher and the receiver of messages is called the subscriber.

This Pub/Sub pattern essentially creates a barrier between the publisher and subscriber in that
they do not know about the existence of the other. The broker who is known by both is the link
between them. The broker can filter all the messages and distribute them to the subscriber that
is supposed to receive them. Multiple subscribers can be receiving messages from the broker at
the same time but getting different data. This allows for separating out access so only pertinent
data is received to selected individuals or “subscribers”. The graphic below shows how Pub/Sub
works.

278

What is the current functionality of EZLogix?
The EZLogix PLC currently works as a publisher of data in the MQTT pattern. It is very flexible in
that it works with any broker that the customer would like. The EZLogix PLC connects to the
broker with a username and password for security and then can publish up to 80 tags, also
known as topics, at settable intervals.

Why does EZLogix as an Edge-Gateway device use MQTT for its communication?
The MQTT protocol is becoming the industry standard communication protocol for IIoT. More
importantly, the MQTT protocol, provides a “bridge” between existing operational technology
within a plant, for example factory machines, and plant database networks so valuable data can
be shared reliably and securely to improve plant productivity and efficiency.

Misconceptions of IIoT and MQTT.

1. Implementation is extremely costly.
The EZLogix PLC, with base rack, CPU and power supply all included is at an extremely
attractive price of $248 and has IIoT MQTT protocol built in, among many other features
including data-logging, ladder logic and function blocks, auto-tuned PID and much more…

279

2. Better to wait for an Industry Consensus.

MQTT is becoming the industry standard therefore a consensus around it is developing in
the manufacturing and process sectors. But even if that wasn’t true, MQTT is a light and
versatile protocol which can allow for communication with many different machines and
plant devices.

3. Is implementing IIoT really worth it?
IIoT connectivity allows “management” to see plant performance thereby allowing the plant
to optimize and track their production and efficiency. Furthermore, the implementation of
IIoT can help with offsite troubleshooting and offsite analysis of production data.

4. Adding IIoT will be complicated.
The EZLogix PLC has IIoT MQTT protocol built in and therefore it is a very easy setup process.
Also if in the future you wish to add IIoT to an existing system no major changes are needed.
Please see the MQTT Essentials section to understand how simple IIoT MQTT protocol is.

280

8.2 MQTT Essentials
This section explores the basics of MQTT and how it functions. For easy setup guide please see
Section 8.3, 8.4 and 8.5.

8.2.1 Basic Concepts
Referenced from http://mqtt.org/ and http://mosquitto.org/man/mqtt-7.html

Publish/Subscribe
The MQTT protocol is based on the principle of publishing messages and subscribing to topics,
or "pub/sub". Multiple clients connect to a broker and subscribe to topics that they are
interested in. Clients also connect to the broker and publish messages to topics. Many clients
may subscribe to the same topics and do with the information as they please. The broker and
MQTT act as a simple, common interface for everything to connect to. This means that if you
have clients that dump subscribed messages to a database, for example Twitter, or even a
simple text file, then it becomes very simple to add new sensors or other data input to a
database, Twitter or so on.

Topics/Subscriptions
Messages in MQTT are published on topics. There is no need to configure a topic, publishing on
it is enough. Topics are treated as a hierarchy, using a slash (/) as a separator. This allows
sensible arrangement of common themes to be created, much in the same way as a filesystem.
For example, multiple computers may all publish their hard drive temperature information on
the following topic, with their own computer and hard drive name being replaced as
appropriate:

sensors/COMPUTER_NAME/temperature/HARDDRIVE_NAME

Clients can receive messages by creating subscriptions. A subscription may be to an explicit
topic, in which case only messages to that topic will be received, or it may include wildcards.

http://mqtt.org/
http://mosquitto.org/man/mqtt-7.html

281

Quality of Service
MQTT defines three levels of Quality of Service (QoS). The QoS defines how hard the
broker/client will try to ensure that a message is received. Messages may be sent at any QoS
level, and clients may attempt to subscribe to topics at any QoS level.

Higher levels of QoS are more reliable, but involve higher latency and have higher bandwidth
requirements.

0: The broker/client will deliver the message once, with no confirmation.
1: The broker/client will deliver the message at least once, with confirmation required.
2: The broker/client will deliver the message exactly once by using a four step handshake.

Retained Messages
All messages may be set to be retained. This means that the broker will keep the message even
after sending it to all current subscribers. If a new subscription is made that matches the topic of
the retained message, then the message will be sent to the client. This is useful as a "last known
good" mechanism. If a topic is only updated infrequently, then without a retained message, a
newly subscribed client may have to wait a long time to receive an update. With a retained
message, the client will receive an instant update.

282

8.2.2 MQTT More Details and Examples
Referenced from http://www.hivemq.com/blog/mqtt-essentials/ and http://mosquitto.org/ .A
full explanations of how MQTT function can be found in section 8.6.

MQTT History
MQTT was invented by Andy Stanford-Clark (IBM) and Arlen Nipper (Arcom, now Cirrus Link)
back in 1999, when their use case was to create a protocol for minimal battery loss and minimal
bandwidth connecting oil pipelines over satellite connection. They specified the following goals,
which the future protocol should have:

• Simple to implement
• Provide a Quality of Service Data Delivery
• Lightweight and Bandwidth Efficient
• Data Agnostic
• Continuous Session Awareness

These goals are still the core of MQTT, while the focus has changed from proprietary embedded
systems to open Internet of Things use cases. Another thing that is often confused about MQTT
is the appropriate meaning of the abbreviation MQTT. It’s a long story, the short answer is that
MQTT officially does not have an acronym anymore, it’s just MQTT.

OASIS Standard
Around 3 years after the initial publication, it was announced that MQTT should be standardized
under the wings of OASIS, an open organization with the purpose of advancing standards. On
October 29th 2014 MQTT was officially approved as OASIS Standard. MQTT 3.1.1 is now the
newest version of the protocol.

http://www.hivemq.com/blog/mqtt-essentials/
http://mosquitto.org/man/mqtt-7.html
https://www.oasis-open.org/news/announcements/mqtt-version-3-1-1-becomes-an-oasis-standard

283

Definition of Client/Broker

Client
When talking about a client it almost always means an MQTT client. This includes publisher or
subscribers, both of them label an MQTT client that is only doing publishing or subscribing. (In
general a MQTT client can be both a publisher & subscriber at the same time). A MQTT client is
any device from a micro controller up to a full-fledged server that has a MQTT library running
and is connecting to an MQTT broker over any kind of network. This could be a really small and
resource constrained device that is connected over a wireless network and has a library
strapped to the minimum or a typical computer running a graphical MQTT client for testing
purposes, basically any device that has a TCP/IP stack and speaks MQTT over it.

Broker
The counterpart to a MQTT client is the MQTT broker, which is the heart of any
publish/subscribe protocol. Depending on the concrete implementation, a broker can handle up
to thousands of concurrently connected MQTT clients. The broker is primarily responsible for
receiving all messages, filtering them, decide who is interested in it and then sending the
message to all subscribed clients. Another responsibility of the broker is the authentication and
authorization of clients. And at most of the times a broker is also extensible, which allows to
easily integrate custom authentication, authorization and integration into backend systems.
Especially the integration is an important aspect, because often the broker is the component,
which is directly exposed on the internet and handles a lot of clients and then passes messages
along to downstream analyzing and processing systems. All in all the broker is the central hub,
which every message needs to pass.

Note: A broker has only 1 message per topic therefore for data acquisition a server client (cloud
storage) or any such devices with data storage capability needs to be used. They will subscribe to
the broker and store all the messages seen.

284

Quality of Service Expanded
Higher levels of QoS are more reliable, but involve higher latency and have higher bandwidth
requirements.

0: The broker/client will deliver the message once, with no confirmation. Since there is no
confirmation the message might not be delivered if connection is bad. This is often called “fire
and forget” and provides the same guarantee as the underlying TCP protocol.

1: The broker/client will deliver the message at least once, with confirmation required. Will send
message till confirmation received so possible that multiples of the message can exist.

2: The broker/client will deliver the message exactly once by using a four step handshake. Will
always have exactly one of the message delivered. It is the slowest quality of service level.
Currently not supported by the EZLogix PLC.

The client chooses the maximum QoS it will receive. For example, if a message is published at
QoS 2 and a client is subscribed with QoS 0, the message will be delivered to that client with
QoS 0. If a second client is also subscribed to the same topic, but with QoS 2, then it will receive
the same message but with QoS 2. For a second example, if a client is subscribed with QoS 2 and
a message is published on QoS 0, the client will receive it on QoS 0.

Best Practice
The following should provide you some guidance if you are also confronted with this decision.
Often this is heavily depending on your use case.

Use QoS 0 when …

• You have a complete or almost stable connection between sender and receiver. A classic
use case is when connecting a test client or a front end application to a MQTT broker
over a wired connection.

• You don’t care if one or more messages are lost once a while. That is sometimes the
case if the data is not that important or will be send at short intervals, where it is okay
that messages might get lost.

• You don’t need any message queuing. Messages are only queued for disconnected
clients if they have QoS 1 or 2 and a persistent session.

285

Use QoS 1 when …

• You need to get every message and your use case can handle duplicates. The most often
used QoS is level 1, because it guarantees the message arrives at least once. Of course
your application must be tolerating duplicates and process them accordingly.

• You can’t bear the overhead of QoS 2. Of course QoS 1 is a lot faster in delivering
messages without the guarantee of level 2.

Use QoS 2 when …

• It is critical to your application to receive all messages exactly once. This is often the
case if a duplicate delivery would do harm to application users or subscribing clients.
You should be aware of the overhead and that it takes a bit longer to complete the QoS
2 flow. Currently not supported by the EZLogix PLC.

Queuing of QoS 1 and 2 messages
All messages sent with QoS 1 and 2 will also be queued for offline clients, until they are available
again. But queuing is only happening, if the client has a persistent session (durable connection).

286

Topics
A topic is a UTF-8 string, which is used by the broker to filter messages for each connected
client. A topic consists of one or more topic levels. Each topic level is separated by a forward
slash (topic level separator).

WildCards (Topics)
For topic navigation there exist wildcards. Two wildcards are available, + or # for use in topics.
These allow for easier access to different ranges of topics.

+ can be used as a wildcard for a single level of hierarchy. An example of its use:

sensors/+/temperature/+

can be used as a wildcard for all remaining levels of hierarchy. This means that it must be the
final character in a subscription. An example of its use:

sensors/machine/temperature/#

Example +
As another example, for a topic of "a/b/c/d", the following example subscriptions will match:

a/b/c/d +/b/c/d a/+/c/d a/+/+/d +/+/+/+

The following subscriptions will not match:

a/b/c b/+/c/d +/+/+

Example #
With a topic of "a/b/c/d", the following example subscriptions will match:

a/# a/b/# a/b/c/# +/b/c/#

287

Topic Best Practices
So these were the basics about MQTT message topics. As you can see, MQTT topics are
dynamically and give great flexibility to its creator. But when using these in real world
applications there are some challenges you should be aware of.

Don’t use a leading forward slash
It is allowed to use a leading forward slash in MQTT, for example
/myhome/groundfloor/livingroom. But that introduces an unnecessary topic level with a zero
character at the front. That should be avoided, because it doesn’t provide any benefit and often
leads to confusion.

Don’t use spaces in a topic
A space is the natural enemy of each programmer, they often make it much harder to read and
debug topics, when things are not going the way, they should be. So similar to the first one, only
because something is allowed doesn’t mean it should be used. UTF-8 knows many different
white space types, it’s pretty obvious that such uncommon characters should be avoided.

Keep the topic short and concise
Each topic will be included in every message it is used in, so you should think about making
them short and concise. When it comes to small devices, each byte counts and makes really a
difference.

Use only ASCII characters, avoid non printable characters
Using non-ASCII UTF-8 character makes it really hard to find typos or issues related to the
character set, because often they cannot be displayed correctly. Unless it is really necessary we
recommend avoid using non ASCII character in a topic.

Embed a unique identifier or the ClientId into the topic
In some cases it is very helpful, when the topic contains a unique identifier of the client the
publish is coming from. This helps identifying, who send the message. Another advantage is the
enforcement of authorization, so that only a client with the same ClientId as contained in the
topic is allowed to publish to that topic. So a client with the id client1 is allowed to publish to
client1/status, but not permitted to publish to client2/status.

288

Don’t subscribe to #
Sometimes it is necessary to subscribe to all messages, which are transferred over the broker,
for example when persisting all of them into a database. This should not be done by using a
MQTT client and subscribing to the multi level wildcard. The reason is that often the subscribing
client is not able to process the load of messages that is coming its way. Especially if you have a
massive throughput. The recommended solution is to implement an extension in the MQTT
broker.

Don’t forget extensibility
Topics are a flexible concept and there is no need to preallocate them in any kind of way,
regardless both the publisher and subscriber need to be aware of the topic. So it is important to
think about how they can be extended in case you are adding new features to your product. For
example when your smart home solution is extended by some new sensors, it should be
possible to add these to your topic tree without changing the whole topic hierarchy.

Use specific topics, instead of general ones
When naming topics it is important not to use them like a queue, for example using only one
topic for all messages is an anti pattern. You should use as specific topics as possible. So if you
have three sensors in your living room, you should use topics myhome/livingroom/temperature,
myhome/livingroom/brightness and myhome/livingroom/humidity, instead of sending all values
over myhome/livingroom.

289

Persistent session / Durable connections
When a client connects to a MQTT broker, it needs to create subscriptions for all topics that it is
interested in in order to receive messages from the broker. On a reconnect these topics are lost
and the client needs to subscribe again. This is the normal behavior with no persistent session.
But for constrained clients with limited resources it would be a burden to subscribe again each
time they lose the connection. So a persistent session saves all information relevant for the
client on the broker. The session is identified by the clientId provided by the client on
connection establishment (more details).

So what will be stored in the session?

• Existence of a session, even if there are no subscriptions
• All subscriptions
• All messages in a Quality of Service (QoS) 1 or 2 flow, which are not confirmed by the

client
• All new QoS 1 or 2 messages, which the client missed while it was offlne
• All received QoS 2 messages, which are not yet confirmed to the client

That means even if the client is offline all the above will be stored by the broker and are
available right after the client reconnects.

How to start/end a persistent session?
A persistent session can be requested by the client on connection establishment with the
broker. The client can control, if the broker stores the session using the clean Session flag. If the
clean session is set to true then the client does not have a persistent session and all information
are lost when the client disconnects for any reason. When clean session is set to false, a
persistent session is created and it will be preserved until the client requests a clean session
again. If there is already a session available then it is used and queued messages will be
delivered to the client if available.

290

Best practices
When you should use a persistent session and when a clean session?

Persistent Session

• A client must get all messages from a certain topic, even if it is offline. The broker should
queue the messages for the client and deliver them as soon as the client is online again.

• A client has limited resources and the broker should hold its subscription, so the
communication can be restored quickly after it got interrupted.

• The client should resume all QoS 1 and 2 publish messages after a reconnect.

Clean session

• A client is not subscribing, but only publishing messages to topics. It doesn’t need any
session information to be stored on the broker and publishing messages with QoS 1 and
2 should not be retried.

• A client should explicitly not get messages for the time it is offline.

How long are messages stored on the broker?
An often asked question is how long is a session stored on the broker. The easy answer is until
the clients comes back online and receives the message. But what happens if a client does not
come online for a long time? The constraint for storing messages is often the memory limit of
the operating system. There is no standard way on what to do in this scenario. It totally depends
on the use case and the broker.

291

Retained Messages
A retained message is a normal MQTT message with the retained flag set to true. The broker will
store the last retained message and the corresponding QoS for that topic. Each client that
subscribes to a topic pattern, which matches the topic of the retained message, will receive the
message immediately after subscribing. For each topic only one retained message will be stored
by the broker.

The subscribing client can identify if a received message was a retained message or not, because
the broker sends out retained messages with the retained flag still set to true. A client can then
decide on how to process the message.

So retained messages can help newly subscribed clients to get a status update immediately after
subscribing to a topic and don’t have to wait until a publishing clients send the next update.

In other words a retained message on a topic is the last known good value, because it doesn’t
have to be the last value, but it certainly is the last message with the retained flag set to true.

It is important to understand that a retained message has nothing to do with a persistent
session of any client. Once a retained message is stored by the broker, the only way to remove it
is explained below.

Send a retained message
Sending a retained message from the perspective of a developer is quite simple and straight-
forward. You just need to set the retained flag of a MQTT publish message to true. Each client
library typically provides an easy way to do that.

Delete a retained message
There is also a very simple way for deleting a retained message on a topic: Just send a retained
message with a zero byte payload on that topic where the previous retained message should be
deleted. The broker deletes the retained message and all new subscribers won’t get a retained
message for that topic anymore. Often deleting is not necessary, because each new retained
message will overwrite the last one.

292

Why and when you should use Retained Messages?
A retained message makes sense, when newly connected subscribers should receive messages
immediately and shouldn’t have to wait until a publishing client sends the next message. This is
extremely helpful when for status updates of components or devices on individual topics. For
example the status of device1 is on the topic myhome/devices/device1/status, a new subscriber
to the topic will get the status (online/offline) of the device immediately after subscribing when
retained messages are used. The same is true for clients, which send data in intervals,
temperature, GPS coordinates and other data. Without retained messages new subscribers are
kept in the dark between publish intervals. So using retained messages helps to provide the last
good value to a connecting client immediately.

293

Last Will and Testament
When a client connects to a broker, it may inform the broker that it has a will. This is a message
that it wishes the broker to send when the client disconnects unexpectedly. The will message
has a topic, QoS and retain status just the same as any other message. EZLogix PLC currently
does not support Wills.

When will a broker send the LWT message?
According to the MQTT 3.1.1 specification the broker will distribute the LWT of a client in the
following cases:

• An I/O error or network failure is detected by the server.
• The client fails to communicate within the Keep Alive time.
• The client closes the network connection without sending a DISCONNECT packet first.
• The server closes the network connection because of a protocol error.
• We will hear more about the Keep Alive time in the next post.

Best Practices – When should you use LWT?
LWT is ideal for notifying other interested clients about the connection loss. In real world
scenarios LWT is often used together with retained messages, in order to store the state of a
client on a specific topic. For example after a client has connected to a broker, it will send a
retained message to the topic client1/status with the payload “online“. When connecting to the
broker, the client sets the LWT message on the same topic to the payload “offline” and marks
this LWT message as a retained message. If the client now disconnects ungracefully, the broker
will publish the retained message with the content “offline“. This pattern allows for other clients
to observe the status of the client on a single topic and due to the retained message even newly
connected client now immediately the current status.

294

8.3 Basic MQTT Setup on EZLogix
The EZLogix PLC MQTT Publish instructions is looked at in Section 3.3.16. But before the
instruction can be used the MQTT Broker information needs to be configured. To do this please
go to Setup > MQTT Setup…. The needed information for this setup is:

Information Type Description Example
Domain Name This is the broker URL. Used to find your

broker that you have configured.
m12.cloudmqtt.com

Port Number Port number that your broker uses. 16581
Client ID Individual connection ID. Needs to be different

for every client otherwise will encounter
problems. Can be random.

ee097f5c-fa36-4929-
9414-fad17b3df3bd

User Name Your configured username for EZLogix
connection to broker. Should be different for
every client.

Password Your configured password for EZLogix
connection to broker. Should be different for
every client.

Instruction to setup MQTT:

10. Go to Setup > MQTT Setup…. You will see the following dialog box appear.

11. Use the Domain Name
Lookup with the Domain Name
from the broker to find the
Broker IP Address.

12. Enter the port number
from the broker.

13. Select your keep alive
interval if wanted. See section 8.6
for more information.

14. Enter a unique client ID or generate one using the Generate Unique Id button.
15. Enter the user name and password for your broker.

295

16. Go to the MQTT topics.

17. In the MQTT Topics use the Add Topic button to create the prefixes for your tags.

The publish instruction will publish the tagname as a topic but if you want to have
more topic information create the prefix here. For example:

Note: After this topic an “/” is appended

Topic: EZLogixPLC/Machine1
TagName: Speed

Published Topic: EZLogixPLC/Machine1/Speed

18. Now in your ladder logic add the IIoT (MQTT) Publish instruction and configure it.
For configuration options please see Section 3.3.16.

296

8.4 Broker Setup
The EZLogix PLC can work with any third party broker. It has been tested and used extensively
with the CloudMQTT broker. This section will go through some important information about
setup of your broker.

CloudMQTT has a free plan for testing purposes. Please see below for setup instructions.

Broker Setup Basics

1. For any broker you can go to their website and create an account. For the CloudMQTT
broker you go to https://www.cloudmqtt.com/.

2. Then the plans section will give you information on the different plans available and their
cost. The documentation provides information about how MQTT works. Support is the Cload
MQTT Tech Support. Finally the Control Panel is what you use to create the MQTT
connection.

3. After going to Control Panel, please create an account or login to an account.

4. In the account create a new CloudMQTT Instance.

5. Enter a Name, select the Data Center and then for the free plan use the Cute Cat plan.

https://www.cloudmqtt.com/

297

6. Once the Instance is create click on details to find the information needed to subscribe to

this broker.

7. The Instance Info is the information that is needed for both the EZLogix Designer Pro and EZ-
IIoT Subscriber Utility.

8. This information provides the details for
this connections where:

9. You can also add more users in the Manage Users section. You just need to provide the
username and password.

10. Finally you can create ACL rules which govern what each user can access. This allows for
management and distribution of topics to the correct people.

11. You have now configured your broker and it can be used with the EZLogix PLC and the EZ-
IIoT Subscriber Utility.

EZLogix Instance Info
Domain Name Server
Port Number Port
Client ID N.A.
User Name User
Password Password

298

8.5 EZLogix IIoT (MQTT) Example
This sections shows the creation of an IIoT (MQTT) Publish instruction from start to finish in a
project. It requires that the user has created a broker and has broker information.

Used Broker Information:

Information Type Information
Domain Name m12.cloudmqtt.com
Port Number 16581
Client ID Test-ID0001
User Name TEST
Password AVG123

1. In a open project go to Setup > MQTT Setup…
2. Click on Domain Name
Lookup.

3. Enter the domain name
and press Lookup. This will
find the domain’s IP
address. Once found press
Use Select IP.

4. The Broker IP will now have been entered.
5. Next input the port number (16581).
6. For this example we keep the Keep Alive Interval at 0.
7. Enter the Client ID or generate an Unique one.
8. Finally add your broker username and password.

299

9. The final result should look something like this.

10. Now go to the MQTT Topics. Use the Add Topic to add a topic, for example:

 EZLogixPLC/TestTopic

11. You can also select here the
QoS (Quality of Service) and
whether the message should be
retained.

12. You have now configured your

MQTT connection. Next you need to add the IIoT (MQTT) Publish instruction.

300

13. In the sidebar select the IIoT (MQTT) Publish instruction and add
it to your logic. Double click on the instruction to bring up the
configuration dialog.

14. Under publish select the type of publishing you would like. For this example it will be At

Regular Time Intervals (When Enable Tag is High).

15. Now add an Enable Tag, set the Publish Time-interval to 5 Minutes, and add an Status
Tag.

301

16. Finally move the publish tag to the selected tag area. Final result will look like this:

Where this instruction will publish the Publish Tag to the
broker every 5 minutes when the Enable (S1) tag is ON.

The published topic will be:
EZLogixPLC/TestTopic/PUBLISH TAG

Published value will include a timestamp and the current value of PUBLISH TAG (R1).

302

8.6 MQTT HIVEMQ Essentials
Most of this section has been take from http://www.hivemq.com/blog/mqtt-essentials/ and is
their MQTT essentials blog posts. It has been condensed here for to describe the basics of MQTT
and how it functions.

Pub/Sub Pattern
As already mentioned the main aspect in pub/sub is the decoupling of publisher and receiver,
which can be differentiated in more dimensions:

• Space decoupling: Publisher and subscriber do not need to know each other (by ip
address and port for example)

• Time decoupling: Publisher and subscriber do not need to run at the same time.
• Synchronization decoupling: Operations on both components are not halted during

publish or receiving

In summary publish/subscribe decouples publisher and receiver of a message, through filtering
of the messages it is possible that only certain clients receive certain messages. The decoupling
has three dimensions: Space, Time, and Synchronization.

Scalability
Pub/Sub also provides a greater scalability than the traditional client-server approach. This is
because operations on the broker can be highly parallelized and processed event-driven. Also
often message caching and intelligent routing of messages is decisive for improving the
scalability.

Message Filtering
So what’s interesting is, how does the broker filter all messages, so each subscriber only gets the
messages it is interested in?
Option 1: Subject-based filtering
The filtering is based on a subject or topic, which is part of each message. The receiving client
subscribes on the topics it is interested in with the broker and from there on it gets all message
based on the subscribed topics. Topics are in general strings with an hierarchical structure, that
allow filtering based on a limited number of expression.
Option 2: Content-based filtering
Content-based filtering is as the name already implies, when the broker filters the message
based on a specific content filter-language. Therefore clients subscribe to filter queries of

http://www.hivemq.com/blog/mqtt-essentials/

303

messages they are interested in. A big downside to this is, that the content of the message must
be known beforehand and cannot be encrypted or changed easily.
Option 3: Type-based filtering
When using object-oriented languages it is a common practice to filter based on the type/class
of the message (event). In this case a subscriber could listen to all messages, which are from
type Exception or any subtype of it.

There are some drawbacks to consider. The decoupling of publisher and subscriber, which is the
key in pub/sub, brings a few challenges with it. You have to be aware of the structuring of the
published data beforehand. In case of subject-based filtering, both publisher and subscriber
need to know about the right topics to use. Another aspect is the delivery of message and that a
publisher can’t assume that somebody is listening to the messages he sends. Therefore it could
be the case that a message is not read by any subscriber.

Distinction from Message Queues
So there are many confusions about MQTT, its name and if it is implemented as a message
queue or not. We will try to bring light into the dark and explain the differences. In our last post
we already pointed out that the name MQTT comes from an IBM product called MQseries and
has nothing to do with “message queue“. But regardless of the name, what are the differences
between MQTT and a traditional message queue?

A message queue stores message until they are consumed
When using message queues, each incoming message will be stored on that queue until it is
picked up by any client (often called consumer). Otherwise the message will just be stuck in the
queue and waits for getting consumed. It is not possible that message are not processed by any
client, like it is in MQTT if nobody subscribes to a topic.

A message will only be consumed by one client
Another big difference is the fact that in a traditional queue a message is processed by only one
consumer. So that the load can be distributed between all consumers for a particular queue. In
MQTT it is quite the opposite, every subscriber gets the message, if they subscribed to the topic.

Queues are named and must be created explicitly
A queue is far more inflexible than a topic. Before using a queue it has to be created explicitly
with a separate command. Only after that it is possible to publish or consume messages. In
MQTT topics are extremely flexible and can be created on the fly.

304

MQTT Connection Information
Below is all basic information that is necessary to connect to a MQTT broker from a MQTT client.
ClientId
The client identifier (short ClientId) is an identifier of each MQTT client connecting to a MQTT
broker. As the word identifier already suggests, it should be unique per broker. The broker uses
it for identifying the client and the current state of the client. If you don’t need a state to be
hold by the broker, in MQTT 3.1.1 (current standard) it is also possible to send an empty
ClientId, which results in a connection without any state. A condition is that clean session is true,
otherwise the connection will be rejected.

Clean Session
The clean session flag indicates the broker, whether the client wants to establish a persistent
session or not. A persistent session (Clean Session is false) means, that the broker will store all
subscriptions for the client and also all missed messages, when subscribing with Quality of
Service (QoS) 1 or 2. If clean session is set to true, the broker won’t store anything for the client
and will also purge all information from a previous persistent session.

Username/Password
MQTT allows to send a username and password for authenticating the client and also
authorization. However, the password is sent in plaintext, if it isn’t encrypted or hashed by
implementation or TLS is used underneath. We highly recommend to use username and
password together with a secure transport of it. In brokers like HiveMQ it is also possible to
authenticate clients with an SSL certificate, so no username and password is needed.

Will Message
The will message is part of the last will and testament feature of MQTT. It allows to notify other
clients, when a client disconnects ungracefully. A connecting client will provide his will in form of
an MQTT message and topic in the CONNECT message. If this clients gets disconnected
ungracefully, the broker sends this message on behalf of the client. We will talk about this in
detail in an individual post.

Keep Alive
The keep alive is a time interval, the clients commits to by sending regular PING Request
messages to the broker. The broker response with PING Response and this mechanism will allow
both sides to determine if the other one is still alive and reachable. We’ll talk about this in detail
in a future post.

305

Publish Functionality
After a MQTT client is connected to a broker, it can publish messages. MQTT has a topic-based
filtering of the messages on the broker, so each message must contain a topic, which will be
used by the broker to forward the message to interested clients. Each message typically has a
payload which contains the actual data to transmit in byte format. EZLogix PLC MQTT Publish
sends the data in basic text with time stamp included. Below is some more information on the
message attributes:

Topic Name
A simple string, which is hierarchically structured with forward slashes as delimiters. An example
would be “myhome/livingroom/temperature” or “Germany/Munich/Octoberfest/people”.

QoS
A Quality of Service Level (QoS) for this message. The level (0, 1 or 2) determines the guarantee
of a message reaching the other end (client or broker).

Retain-Flag
This flag determines if the message will be saved by the broker for the specified topic as last
known good value. New clients that subscribe to that topic will receive the last retained
message on that topic instantly after subscribing.

Payload
This is the actual content of the message. EZLogix PLC MQTT Publish sends the data in basic text
with time stamp included.

Packet Identifier
The packet identifier is a unique identifier between client and broker to identify a message in a
message flow. This is only relevant for QoS greater than zero. Setting this MQTT internal
identifier is the responsibility of the client library and/or the broker.

DUP flag
The duplicate flag indicates, that this message is a duplicate and is resent because the other end
didn’t acknowledge the original message. This is only relevant for QoS greater than 0. This
resend/duplicate mechanism is typically handled by the MQTT client library or the broker as an
implementation detail.

306

Subscribe Functionality
Publishing messages doesn’t make sense if no one ever receives the message, or, in other
words, if there are no clients subscribing to any topic. A client needs to send a SUBSCRIBE
message to the MQTT broker in order to receive relevant messages. A subscribe message is
pretty simple, it just contains a unique packet identifier and a list of subscriptions.

Packet Identifier
The packet identifier is a unique identifier between client and broker to identify a message in a
message flow. This is only relevant for QoS greater than zero. Setting this MQTT internal
identifier is the responsibility of the client library and/or the broker.

List of Subscriptions
A SUBSCRIBE message can contain an arbitrary number of subscriptions for a client. Each
subscription is a pair of a topic topic and QoS level. The topic in the subscribe message can also
contain wildcards, which makes it possible to subscribe to certain topic patterns. If there are
overlapping subscriptions for one client, the highest QoS level for that topic wins and will be
used by the broker for delivering the message.

307

8.7 EZ-IIoT Subscriber Utility
The data EZLogix PLC publishes to the broker is accessible through any third party subscriber
utility but EZ Automation has created its own take on this utility. The EZAutomation subscriber
utility is developed to make it very easy to see current updated information as well as store any
previously published information. This utility will data log any MQTT messages that it sees when
subscribed to the broker.

8.7.1 Install EZ-IIoT Subscriber Utility
The EZ-IIoT Subscriber Utility is a separate setup which can be downloaded from
www.EZAutomation.com. The EZ-IIoT Subscriber Utility can be installed on any computer that
the EZLogix Designer Pro can and at least 2 MB of free space on hard drive for installation.
Follow directions below to setup the utility.

1. Download the EZ-IIoT Subscriber Utility ZIP file from the website.

2. Extract the zip folder to the location where you want to place the utility.
3. The utility will now run. Please follow directions below to setup your broker connection.

Note: The EZ-IIoT Subscriber Utility requires .NET Framework 4.5 which you might need to install
from the Microsoft Windows Website.

http://www.ezautomation.com/

308

8.7.2 EZ-IIoT Subscriber Utility Setup
The EZ-IIoT Subscriber Utility is very easy to setup. The only information needed is listed in the
table below. To setup the utility please follow the instructions below.

Information Type Example Information
Domain Name (Server URI) m12.cloudmqtt.com
Client ID Test-ID0001
User Name TEST
Password AVG123
Port Number 16581

1. Open the EZ-IIoT Subscriber Utility. In the projects are click the “Add” button.

2. In the new connection enter the information

from the broker. The example shown uses
the example information in the table above.
You can also rename the project in the
Broker Setup window.

309

3. Click the “Save Changes”. You will now have the Connect option in the information
below. Use the “Connect” button to connect to your broker.

4. As soon as you are

connected the Project
will turn green. Now in
the Setup tab go to the
Subscriptions tab. Click
the Update Topics to get
the topics you have
access to. This will only
retrieve topics that
have been published
with the 'Retain Flag'
set to true AND have
been published at least once. If this is not true you can add any topic you would like.
Then select Topics you would like to subscribe to. Once select the topic is subscribed
and you will now be updated in the History tab about its value. Please see the next
section for the full functionality of the Utility.

310

8.7.3 EZ-IIoT Subscriber Utility Functions
The EZ-IIoT Subscriber Utility has 5 tabs total for its full functionality. This section will go through
the 5 tabs and list its functionality. There are 2 main tabs (Dashboard, History) and 3 setup tabs
(Broker, Subscriptions, and File).

Connection Status
The connection status is visible in all tabs and allows the user to connect and disconnect from
the broker. It also lists the current history count and when the last message was received. If
there are any errors they will also be listed here.

Projects List
The project list allows switching between all the different
connection setups. Only one connection can be connected at a
time. New connection can only be added when you are
disconnected from the broker. The green light indicates which
project/connection is actively connected to a broker.

Use the Add and Delete buttons to add and delete connections
when not connected to broker.

311

Dashboard Tab
The dashboard is the main view screen for any Project / Connection. It allows the user to have
an overview of this broker connection and monitor any important topics.

Dashboard Highlighted Topics
Any topic added to the dashboard will have a box
appear where the current status / value can be
monitored. This box will list the topic name at the top.
The last received value is the value in the middle.
Finally it will list the publish time and Utility receive
time at the bottom. To eliminate this topic from the
dashboard use the X or the Remove All option.

Eliminating the topic from the dashboard does not unsubscribe. Note: Each time a new message
is received for this topic it will flash to indicate status change.

Tab Navigation

Topic Information (See Subscription Tab)

Project/Connections Name

Removes all topics from
dashboard. Does not unsubscribe.

Use this to add important topics to the
dashboard to monitor its value and status.

Each individual topic added to dashboard
will have its information box. See below
for more information.

Value

Date and Time published
Date and Time received

312

History Tab
The history tab lists all the received values from all subscribed topics. Filters exist to navigate
and narrow down information. Also the history can be cleared. The connection status area will
list the total count of received values from all topics listed in the history tab. The history can be
saved manually but it is also saved automatically (please see Setup > File Tab for more
information).

History Information
Unique ID – Each received message will have a unique ID number per connection which can be
used to reference the received message. It can be used to search in the .csv file as well.

Received At – This is the time and date that the message was received by the Utility.

Tab Navigation Project/Connections Name

Enable/Disable Filter
Use Add Filter to Topics to create
Filter (Please see next page for
more information) Manually Save Current

History in new .csv file

Clear History
(does not clear saved .csv file)

313

Topic – The subscribed topic name.

Broker Sent At – When the publisher sent the message to the broker. Can be incorrect if
publisher (EZLogix) has wrong date and time.

Message – The actual message. The utility is formatted to expect EZLogix format of messages.
The EZLogix messages are formatted to include the Time Stamp of when the message was sent
and then the message value. The EZLogix publish format is “TimeStamp, Value”. Example below:

Received message: 1501073628, 291
The corresponding history result is:
Broker Sent At: 7/26/2017 12:53:48
Message: 291

QoS – Quality of Service from the publisher. Set on the publisher (EZLogix) side.

Retained Flag – This will tell you if it is a currently published message or if it is a retained
message. The message will say “NO” for retained flag if you are subscribed while it is published.
Otherwise if the message is set on the publisher side as retained you will receive the message as
soon as you subscribe. Please see example below:

Event 1:
Utility: Subscribes
Publisher: Publish Message 1 with Retain Message set
Utility: Message 1 received and has “NO” for retained flag

Event 2:
Publisher: Publish Message 2 with Retain Message set
Utility: Subscribes
Utility: Message 2 received and has “YES” for retained flag

Note: Retain flag will not be “YES” unless the message was published before the user subscribed

Dup. Flag – The duplicate flag will be set to “YES” if the message has been received more then
once by the Broker.

314

Topic Filter

The Topic Filter can be used to filter by
different topics. Use the keyword selector to
search for needed topics. Then select the
topics you would like to see when filter is
enabled. Click “OK” to finish setting up filter.

On the main screen use enable filter to see
only previously selected topics.

315

Setup Broker
This tab is used to configure the broker information before connecting to the broker. Please see
the setup instructions in the previous section for more information.

Note: You cannot connect with the new settings until you save changes.

Tab Navigation

Setup Navigation

Needed Broker Information
(Please see setup section)

Select this if you would like to
Unsubscribe from all topics when
you Disconnect from the Broker

Make sure to save
changes before
connecting

316

Setup Subscriptions
This tab is used to subscribe to different topics. This tab is only available when connected to the
broker. You can either add a topic or subscribe to topics that already exist on the broker. Use
the filter to narrow down the topics you would like to work with.

How to Subscribe to a Topic

To subscribe just check the box next to the Topic you would like to subscribe to. You can change
the Quality of Service (QoS) for communication between utility and Broker for that topic at any
time by using the dropdown (QoS of 1 or 0 allowed). Also you can subscribe to all visible topics
by using the check box next to QoS.

Tab Navigation

Setup Navigation

Subscribe all
visible topics

Enable/Disable Filter
Use Add Filter to Topics to create
Filter (Please see next page for
more information)

317

Update Topics
The update topics will download all topics that exist as retained messages on the broker. Only
the topics that you have permission to see will be downloaded. You can also add any topics you
would like at any time. This will only retrieve topics that have been published with the 'Retain
Flag' set to true AND have been published at least once.

Remove Unsubscribed
The remove unsubscribed option will delete all unsubscribed topics currently visible in the
Subscription window.

Delete
You can delete individual topics by right clicking on topic and selecting the delete option.

Add Topic

You can at any point add a topic to subscribe to by typing in the topic and pressing Add Topic.
Note: you will need to do this for any topic which does not have a retained flag since the
update topics will not populate the list with these.

Topic Filter

The Topic Filter can be used to filter by
different topics. Use the keyword selector to
search for needed topics. Then select the
topics you would like to see when filter is
enabled. Click “OK” to finish setting up filter.

On the main screen use enable filter to see
only previously selected topics.

318

Setup File
This tab is used to configure how the Utility will save the messages it has received. Here you can
name the save file and change the save folder. You can also configure conditions of saving and
when a new file is created.

Note: The newest data will always be saved in the Base Name .csv file. If new files are created
then data is either saved in files with the date and time appended. Or if that format is not used
the oldest files will be in “Base Name1.csv”, second oldest in “Base Name2.csv”. Also if the Base
Name is open in excel, write is not possible so a new file with name “Base Name_.csv will be
created.

Tab Navigation

Setup Navigation

Use this to set the
name of the .csv
and where it will
be saved

These settings are used when Saving Action
is set to Automatic. Use these settings to set
when a new file is created and how it will be
named.

Make sure to save changes since
changes are not implemented till
they are saved.

Select whether history is
saved automatically or you
need to save manually

319

8.7.4 EZ-IIoT Subscriber Utility Best Practices
This section will mention some common best practices when using the EZ-IIoT Subscriber Utility.

Utility Use
Recommended uses of this utility (can be used for multiple purposes at same time):

• Monitor tags – This utility can be used to monitor about 4-10 tags from the dashboard.
• Data Log – When this utility is subscribed it can be used to data log tag values for later

analysis. Note: it is stored as a .csv file.
• Check Status – This utility can also be used to just check status of machine periodically

by subscribing to see current status.
• Troubleshoot – This utility can also be used to see tag values for off-site troubleshooting

capability.

CSV Files
When looking at saved history (data logging) in the CSV files the best way to view is to create a
copy and then view in excel. If the CSV is open in excel the utility can write to it and will create a
new file. Also note the oldest data will have a unique ID of 0 and the newest will have the
highest value unique ID.

Client ID
Please make sure to use different Client IDs for each subscriber. If the same client ID is used for
multiple subscribers only 1 will ever be able to connect to the Broker at a time. If the client IDs
are different all subscribers up to your broker limit can connect to the Broker at the same time.

Username and Password
Each username and password can be limited to only certain topics thereby allowing users
specific access to needed information. Therefore it is best to create a different username and
password for each user. A username and password can be used in multiple locations to connect
at the same time but it is not recommended.

320

EZ-IIoT Subscriber Utility Acceptable Data Format
The EZLogix publish format is “TimeStamp, Value”. The EZ-IIoT Subscriber Utility expects data in
this format. Example below:

Received message: 1501073628, 291
The corresponding history result is:
Broker Sent At: 7/26/2017 12:53:48
Message: 291

