

2

This page intentionally left blank.

Software Manual

Revision A.2.0

3

WARNING!

Programmable control devices such as EZRACK PLC are not fail-safe devices and as such must

not be used for stand-alone protection in any application. Unless proper safeguards are used,
unwanted start-ups could result in equipment damage or personal injury. The operator must be

made aware of this hazard and appropriate precautions must be taken.

In addition, consideration must be given to the use of an emergency stop function that is
independent of the EZRACK PLC.

The diagrams and examples in this user manual are included for illustrative purposes only. The
manufacturer cannot assume responsibility or liability for actual use based on the diagrams and
examples.

Trademarks

This publication may contain references to products produced and/or offered by other
companies. The product and company names may be trademarked and are the sole property of

their respective owners. EZAutomation disclaims any proprietary interest in the marks and names

of others.

© Copyright 2017, EZAutomation

All Rights Reserved

No part of this manual shall be copied, reproduced, or transmitted in any way without the prior

written consent of EZAutomation. EZAutomation retains the exclusive rights to all information

included in this document.

Designed and Built by AVG
4140 Utica Ridge Rd. Bettendorf, IA 52722-1327

Marketed by EZAutomation
4140 Utica Ridge Road Bettendorf, IA 52722-1327
Phone: 1-877-774-3279 (EASY) Fax: 1-877-775-3279 www.ezautomation.net

http://www.ezautomation.net/

4

Table of Contents

Chapter 1: Getting Started

1.1 EZRack PLC Designer Pro .. 11

1.1.1 System Requirements ... 11
1.1.2 Installation .. 11

1.2 EZSTART (Creating/Opening PLC project) .. 14

1.2.1 Programming Ladder Logic ... 18
1.2.2 Creating a Complete Rung .. 20

Chapter 2: EZRack PLC Designer Pro User Interface

2.1 Main Programming Screen .. 23
2.2 Standard Toolbar ... 25
2.3 Instructions Toolbars ... 26

2.3.1 Relay/Boolean Operations .. 26
2.3.2 Compare Operations ... 26
2.3.3 Math Operations ... 27
2.3.4 Bitwise Operations .. 27
2.3.5 Move Operations .. 28
2.3.6 Timer/Counter/Drum .. 28
2.3.7 Program Control Operations ... 28
2.3.8 String Operations .. 28
2.3.9 Communications Operations .. 29
2.3.10 Data Log Operations ... 29
2.3.11 Datatype Conversion Operations .. 29
2.3.12 Process Alarms / Faults Operations .. 29
2.3.13 Analog Operations .. 30
2.3.14 Function Blocks Operations .. 30
2.3.15 IIoT Operations ... 30

2.4 PLC TOOLBAR ... 31

2.4.1 Project Operations .. 31
2.4.2 Online / Simulate Operations ... 31
2.4.3 Debug Operations ... 31

2.5 MENUS ... 32

2.5.1 File Menu .. 32
2.5.2 Edit Menu .. 38
2.5.3 View Menu .. 41

5

2.5.4 Subroutine Menu .. 43
2.5.5 Rung Menu .. 44
2.5.6 Instructions Menu ... 46
2.5.7 PLC Menu .. 48
2.5.8 Setup Menu ... 51
2.5.9 Monitor Menu ... 75
2.5.10 Window Menu .. 77
2.5.11 Help Menu .. 78
2.5.12 Right-Click Menus ... 79

2.6 Project View / Quick Access Bar .. 80
2.7 Operator Bar .. 82
2.8 I/O Graphical View ... 83

Chapter 3: Instructions for Programming EZRack PLC

3.1 Ladder Logic Programming in EZRack PLC ... 86
3.2 Memory Map ... 87

3.2.1 System Discretes ... 88
3.2.2 System Registers ... 89

3.3 RLL Instructions in EZRack PLC ... 91

3.3.1 Available Data Types (Creating and Using) ... 96
3.3.2 Auto Generated Tags / Auto Fill Tag Address ... 99
3.3.3 Relay/Boolean Instructions ... 107
3.3.4 Compare Instructions.. 114
3.3.5 Math Instructions .. 121
3.3.6 Bit Logic Instructions ... 132
3.3.7 Move Instructions ... 137
3.3.8 Timer/Counter/Drum Instructions .. 144
3.3.9 Program Control Instructions ... 156
3.3.11 Communication Instructions ... 169
3.3.12 Data Logging Instructions ... 181
3.3.13 Datatype Conversion .. 188
3.3.14 Process Alarms/Faults ... 191
3.3.15 Analog ... 197
3.3.16 Function Blocks ... 204
3.3.17 IIoT .. 228

Chapter 4: Simulating / Monitoring / Debugging PLC Logic

6

4.1 PLC Simulator Functions .. 235

4.1.1 Simulating your PLC Logic ... 235
4.1.2 Simulator Functions .. 236
4.1.3 Simulator IO View ... 236
4.1.4 Simulator Debugging... 236

4.2 Online Mode .. 237

4.2.1 Edit Online... 238
4.2.2 Monitor Online ... 240
4.2.3 Forcing I/O .. 244

4.3 Debugging PLC Logic .. 245

4.3.1 Debug Mode ... 245
4.3.2 Breakpoints ... 247
4.3.3 Run/Single Step ... 249

Chapter 5: Message Display on EZMarquee

5.1 Message Display on EZMarquee .. 252
5.2 Message Controller Function ... 253

5.2.1 Message Database .. 255
5.2.3 Displaying Messages ... 261
5.2.4 Example ... 262

Chapter 6: PID Loop

6.1 Introduction to PID .. 267
6.2 PID Setup .. 270
6.3 PID Monitor .. 281

Chapter 7: EZRack Communications (Modbus, ASCII, etc.)

7.1 Supported EZRack Communications .. 286

7.1.1 EZRack Serial Communications ... 286
7.1.2 EZRack Ethernet Communications .. 286

7.2 Modbus Communications .. 287

7.2.1 Setup EZRack as an Ethernet Modbus Master .. 289
7.2.2 Setup EZRack as an Ethernet Modbus Slave ... 293
7.2.3 Setup EZRack as a Serial Modbus Master (Modbus RTU) ... 294

7

7.2.4 Setup EZRack as a Serial Modbus Slave (Modbus RTU) .. 300
7.2.5 Modbus Tips and Troubleshooting ... 303

7.3 ASCII Communication .. 305

7.3.1 Setup EZRack to Send Out ASCII Communications ... 307
7.3.2 Setup EZRack to Receive ASCII Communications .. 308

Chapter 8: IIoT (Industrial Internet of Things)

8.1 IIOT (Industrial Internet of Things) .. 310

8.1.1 MQTT .. 311

8.2 MQTT Essentials ... 313

8.2.1 Basic Concepts .. 313
8.2.2 MQTT More Details and Examples ... 315

8.3 Basic MQTT Setup on EZRack PLC .. 324
8.4 Broker Setup .. 326
8.5 EZRack PLC IIoT (MQTT) Example .. 328
8.6 MQTT HIVEMQ Essentials .. 332
8.7 EZ-IIoT Subscriber Utility .. 337

8.7.1 Install EZ-IIoT Subscriber Utility .. 337
8.7.2 EZ-IIoT Subscriber Utility Setup .. 338
8.7.3 EZ-IIoT Subscriber Utility Functions .. 340
8.7.4 EZ-IIoT Subscriber Utility Best Practices ... 349

Chapter 9: EtherNet/IP

9.1 EtherNet/IP Basics ... 351

9.1.1 Implicit vs Explicit Messaging .. 351
9.1.1 Explicit Messaging Details ... 352
9.1.3 Implicit Messaging Details .. 353

9.2 EtherNet/IP Adapter Setup .. 354

9.2.1 EZRack PLC Setup .. 354
9.2.2 Allen-Bradley Setup .. 356
9.2.3 Troubleshooting .. 358

8

Chapter 10: EZRack Modules

10.1 Basic Modules .. 360
10.2 Specialty Modules .. 366

10.2.1 High Speed Counter (EZRPL-IO-HSCNT) .. 367
10.2.2 Resistance Temperature Detector Module (EZRPL-IO-4RTD) 376
10.2.3 Thermocouple Modules (EZRPL-IO-4THIE) ... 379

Chapter 11: Sparkplug B (IIoT / MQTT) Setup and Basic Info

11.1 Sparkplug B IIoT (MQTT) Basic Setup ... 387
11.2 Basic Ignition MQTT Modules Setup .. 393
11.3 Advanced Sparkplug Setup (Security and Encryption) ... 394

11.3.1 Encryption and Certificate Basics.. 394
11.3.2 EZRack PLC Encryption and Certificate Authority Setup: .. 396
11.3.3 Ignition Encryption and Keystore Setup ... 397

11.4 Redundancy Setup (EZRack PLC and Ignition): .. 398
11.5 Store and Forward Setup: .. 399

11.5.1 Store and Forward Time Zone Setup .. 400

11.6 Troubleshooting Sparkplug B Setup: ... 402

9

Technical Support

For technical questions please consult this manual, the hardware manual or the EZRack PLC
Designer Pro Programming Software Help. Finally you can find answers in the download’s
section of our website www.ezautomation.net. If you still need assistance, please call our
technical support at 1-877-774-EASY or FAX us at 1-877-775-EASY.

Manual Revision History

Revision Date Pages Affected Changes Made

A.1 June 2017 All Original

A.1.1 July 2017 Section 8.7 Added Information

A.2.0 October 2017 All Name change, auto addressing
change, Add Ch. 9 and Ch. 10

A.2.1 January 2018 Section 2.5.8,
Section 3.2,
Chapter 11

BCD32 support dropped, Sparkplug
support added, Upgrade Firmware

http://www.ezautomation.net/

10

Chapter 1: Getting Started
In this Chapter…

1.1 EZRack PLC Designer Pro .. 11

1.1.1 System Requirements ... 11
1.1.2 Installation .. 11

1.2 EZSTART (Creating/Opening PLC project) .. 14

1.2.1 Programming Ladder Logic ... 18
1.2.2 Creating a Complete Rung .. 20

1
EZAutomation

11

1.1 EZRack PLC Designer Pro
EZRack PLC Designer Pro is an intuitive and simple to use Relay Ladder Logic (RLL) Editor for
programming EZAutomation’s EZRack PLC. EZRack PLC Designer Pro includes functionality to
create new EZRack PLC programs, edit existing EZRack PLC programs, simulate EZRack PLC
programs, go online and monitor the EZRack PLC, and debug any EZRack PLC programs.

1.1.1 System Requirements
The EZRack PLC Designer Pro works on Windows PCs running Windows 7 or Windows 10 and
requires at least 60 MB of free space on hard drive for installation.

Use an EZ-PGMCBL cable, EZ-WiFi module or Micro-USB to transfer/write your program from the
PC to EZRack PLC.

After initial setup the EZRack PLC can be connected to over Ethernet.

1.1.2 Installation
The EZRack PLC Designer Pro is distributed as a single setup file. The setup file for the Designer
Pro is EZRack PLC Designer Pro x.x.x (FULL) Setup.exe.

Installation of the EZRack PLC Designer Pro is quick and simple. Just run the setup file and follow
the on screen instructions. The default directory where the software installs is “C:\Program Files
(x86)\EZAutomation\EZRack PLC Designer Pro”. You may also choose to install EZRack PLC
Designer Pro in another directory as specified in installation settings. If you are familiar with the
installation process, you may skip the detailed instructions.

To Install
Below are the detailed instructions for installing the software. Just follow the instructions step
by step to install EZRack PLC Designer Pro on your hard drive.

1. Double click on the Setup file. It will verify the installer files.

Once verifying is complete, it will show you the next window.

12

2. Click “Next” button.

3. Please read the License Agreement text
and if you accept, click on “I Agree”

4. The setup program will display the dialog
box below to allow you to choose the
installation folder. As a default, the folder
is “C:\Program Files (x86)\EZAutomation
\EZRack PLC Designer Pro”. You can
change this if you would like to.

Click the Install button to start
installation.

13

5. During installation you will see a dialog
box which will list in detail the files being
copied to your hard drive for installation.

6. After copying necessary files and making registry entries, the installation is complete,

and you will see the dialog box below. Click the Finish button to finish the installation.
The setup program will place a shortcut icon on your desktop.

To Uninstall
If you need to uninstall this program, you can use the Uninstall command from Start->All
Programs->EZRack PLC-> Uninstall.

The uninstaller will prompt you to make sure that you want to uninstall EZRack PLC Designer Pro
and all its components from your computer. If you select YES, all the components of EZRack PLC
Designer Pro will be uninstalled from your computer.

14

1.2 EZSTART (Creating/Opening PLC project)
You can start the EZRack PLC Designer Pro in one of the following 2-ways:
1. Click the EZRack PLC Designer Pro Icon.
2. Select the program using Start>All Programs>EZAutomation>EZRack PLC Designer Pro.

The dialog box allows you to select Programming mode, Project folder location, and Project
Name. In addition, you can configure the EZRack PLC I/O base (defining I/O module locations
and addresses) from this dialog box.

Step 1: Select ACTION

Open / New Project:
Select this mode to create a new
program or edit an existing
program in OFFLINE mode.

Read From PLC
This mode allows you to first
read an existing project from a
PLC, save it on PC, and then edit
your program OFF-LINE. You may
want to use this mode if you do
not have your program on your
computer. For reading back the
program, the EZRack PLC can be
in RUN or PROGRAM mode.

15

Step 2: Select Project Name
Enter the name of the project. The Project
Location field indicates the folder name
where the Project will be saved. If need
be, use the Browse button to select a
different Project location.

Step 3: Selecting and Configuring I/O Base

(You can do this later when you start
programming)
Select the I/O base for your PLC. Currently,
EZRack PLC offers I/O bases for 3, 5, and 7
modules. After selecting the I/O base size,
click on the Configure I/O button to define
the placement and the addresses of the
I/O modules (See dialog box on left).

The Module slot positions are identified as M1,
M2, M3 etc., on the I/O base. The dialog box shows
only the available module positions for the
selected I/O base. For example, a 3-module base
will show only M1-M3 positions, while a 7-slot
base will display rows M1-M7.

To Manually Configure a module on a position,
double click the row corresponding to the position
number (say M1) or click the Add/Edit button.

OR

You can also Auto Configure the IO Modules by
clicking the “Auto Configure IO Modules” button.

16

Manual Configuration
After clicking the Add/Edit button you will get the Edit
IO Module Data Dialogue Screen. Select the module
type from the available modules and it’s I and/or O (IR
and OR for analog) addresses from respective drop
downs. You select the start address of the module,
and the software computes and fills up the end
address of the module automatically.

Auto Configure
For Auto Configure please make sure that the PC
and PLC are connected (either serially, over
micro-usb, or over Ethernet).

After clicking the “Auto Configure IO Modules”
button you will see dialog on the next page.

The EZRack PLC Designer Pro will read back the PLCs configuration and the table on the next
page will display the results. It will also display the rack size detected in the configuration.

Current Configuration -- This the currently selected configuration in the EZRack software.

Detected Configuration -- This the detected configuration of the EZRack PLC.

Select Configuration -- Please select whether to use the current configuration in the software or
the detected configuration. You can also select All in the section right under the title.

Final Configuration -- This will display the configuration which will be now configured in the
software.

17

Please note: there are certain module families which include multiple modules of different types
like “Sinking” or “Sourcing” for Digital Outputs and “Voltage” or “Current” for Analog modules
cannot be differentiated. Therefore please make sure the correct module is selected under the
detected configuration.

Step 4: Configure PC to PLC Communication
(You can do this later too, when you start programming)
This allows you to select the communication port on your PC that would be used to transfer
developed ladder logic to the EZRack PLC. You can make this selection later in the COM
Configuration options of main design screen.

Serial Communication
For serial communication you can use a serial cable (EZ-PGMCBL see
Appendix 1). If your computer does not have a serial port then we
recommend using an USB to Serial Converter. Serial Communication is
also the option used when using a Micro-USB cable to program you
PLC. The EZRack PLC Designer Pro will auto detect the Com Port that
are currently being used. Please select the correct Com Port which
corresponds to the communication cable. The EZRack PLC utilize fixed
serial com parameters (set at 38.4 Baud, 8, N, 1).

18

Ethernet Communication

Ethernet communication can be
used once the EZRack PLC IP
address is configured. To use
Ethernet Communication please
specify the IP address of the PLC
you wish to communicate with. Please note that if your computer has
trouble communicating please check that your PC subnet and gateway
match the PLCs.

AVG WiFi
You can also purchase an EZ-WiFi module to use to communicate with
the EZRack PLC, to do so select the AVG WiFi option. The AVG WiFi
option will automatically detect any EZ-WiFi module and then it can be
used exactly like the Ethernet and Serial communication options.

Simulator
At any time you can simulate your logic by loading it to the simulator.
This allows you to see how your created logic functions without needing
any external equipment. Note: This does not download the project to a
PLC.

Communication Options Table

Communication
Type

PC to PLC Connection Option

Functionality

Transfer
to PLC

Read from
PLC

Monitor PLC
(Online)

Debug PLC
(Online)

Upgrade
Firmware

Serial Cable (EZ-
PGMCBL)

Serial (Select Com Port) ✓ ✓ ✓ ✓ ✓

Micro-USB
Cable

Serial (Select Com Port) ✓ ✓ ✓ ✓ ✓*

Ethernet
Ethernet (Input IP
Address) ✓ ✓ ✓ ✓ ✓*

EZ-WiFi AVG WiFi ✓ ✓ ✓ ✓ ✓*

USB Drive
USB Drive (Create USB
file) ✓ X X X ✓*

✓* Note: Upgrading using these methods requires the EZRack Editor v2.1 or higher and the firmware on the EZRack

PLC to be vA.0.297 or higher. If try to upgrade from vA.0.256 or lower these methods will not work.

19

1.2.1 Programming Ladder Logic
Once you make your selections in the first dialog box and click OK, you will come to the main
programming screen as shown below:

To program a rung, perform the following steps:
1. Select instruction. You can select instructions using a menu, or tool bar, or the operator

bar on the right. The operator bar provides all instructions symbols organized by types.
Once you select an instruction, the cursor changes shape. Click on the location in the
rung area where you want to place the instruction.

2. Connect all placed instructions by using the Line tool.

3. Double click on any instruction to program its parameters.

4. At any time you may Syntax check the logic by selecting View>Syntax Check - Current

Logic.

5. Once you are satisfied with the Ladder Logic, you can transfer the developed project to
the EZRack PLC by selecting File > Transfer to PLC menu.

That’s all you need to do to program ladder logic for EZRack PLC. The following chapters
describe the EZRack PLC Designer Pro User Interface, Ladder Logic Programming, and
Instructions in detail.

Toolbars (Section 2.2, 2.3, & 2.4)

Main Ladder Logic
Programming Area

Project View / Quick Access Bar
(Section 2.6)

Operator Bar (Section 2.7)

20

1.2.2 Creating a Complete Rung
This short example is provided to show you just how easy it is to create a completed rung using
EZRack PLC Designer Pro. To complete a rung, perform the following steps:

1. Place an instruction onto the Main Logic window. In this
example, we’ve used the Normally Open Contact
instruction.
2. Place the other instructions you’d like to include in your
rung onto the Main Logic window. In this example, we’ve
used another Normally Open Contact and a Normally
Open Coil instruction.
3. Use the Line Tool to draw a horizontal line connecting
the first Normally Open Contact instruction to the
Normally Open Coil instruction.
4. Use the Line Tool to draw a vertical line connecting the
first Normally Open Contact instruction to the second
Normally Open Contact instruction and you’re finished
completing a rung.

5. Now you just need to add
addresses by double clicking on
the instructions.

6. In the instruction dialogue input
a Tag Name and click OK or press
enter. The instruction will prompt
you for a Tag Address. For this
example use Tag Name: Start 1,
Start 2, and Motor. For Tag address
use S1, S2, and S3.

7. This is what your Rung should look like when you’re
finished. It’s just that easy!

21

Chapter 2: EZRack PLC
Designer Pro User Interface
In this Chapter…

2.1 Main Programming Screen .. 23
2.2 Standard Toolbar ... 25
2.3 Instructions Toolbars ... 26

2.3.1 Relay/Boolean Operations .. 26
2.3.2 Compare Operations ... 26
2.3.3 Math Operations ... 27
2.3.4 Bitwise Operations .. 27
2.3.5 Move Operations .. 28
2.3.6 Timer/Counter/Drum .. 28
2.3.7 Program Control Operations ... 28
2.3.8 String Operations .. 28
2.3.9 Communications Operations .. 29
2.3.10 Data Log Operations ... 29
2.3.11 Datatype Conversion Operations .. 29
2.3.12 Process Alarms / Faults Operations .. 29
2.3.13 Analog Operations .. 30
2.3.14 Function Blocks Operations .. 30
2.3.15 IIoT Operations ... 30

2.4 PLC TOOLBAR ... 31

2.4.1 Project Operations .. 31
2.4.2 Online / Simulate Operations ... 31
2.4.3 Debug Operations ... 31

2.5 MENUS ... 32

2.5.1 File Menu .. 32
2.5.2 Edit Menu .. 38
2.5.3 View Menu .. 41

2
EZAutomation

22

2.5.4 Subroutine Menu .. 43
2.5.5 Rung Menu .. 44
2.5.6 Instructions Menu ... 46
2.5.7 PLC Menu .. 48
2.5.8 Setup Menu ... 51
2.5.9 Monitor Menu ... 75
2.5.10 Window Menu .. 77
2.5.11 Help Menu .. 78
2.5.12 Right-Click Menus ... 79

2.6 Project View / Quick Access Bar .. 80
2.7 Operator Bar .. 82
2.8 I/O Graphical View ... 83

23

2.1 Main Programming Screen

Title Bar

The title bar displays the software name and logo as well as the name of the project currently
open.

Main Menu Bar

This contains all of the drop menus available in EZRack PLC Designer Pro. Some of the menus are
context sensitive, so they are hidden or displayed based on context. See Section 2.5 for more
information.

24

Project View / Quick Access Bar

This displays different elements being used in your current
project. The Project View can also be used as a navigational tool. If
you click onto an element in Project View, it will be displayed in
the Logic Display Window. It also has quick access to most used
functions like Transfer to PLC. Please see Section 2.6 for more
information.

Status Bar

This line at the bottom of the screen displays the status of the
current project. And current PLC Status if Online with PLC.

Instruction Icons / Operator Bar

This area contains all of the RLL Instruction
icons you will use in your project. Please see
Section 2.7 for more information.

Toolbars

This is another way for you to access the RLL instructions and many other functions in EZRack
PLC Designer Pro. Please see Section 2.2, 2.3 and 2.4 for more information. Most Toolbars are
hidden away as default but can be accessed in Edit > Toolbars.

25

 Zoom In

 Zoom Out

 Syntax Check

 Select Tool

 Line Tool (Alt-L or double click in Ladder Logic)

 Go To Rung

 Go To Label

 Tag Database

 Toggle Operator Bar for Instruction Display

 Monitor Mode / Edit Mode

2.2 Standard Toolbar
The EZRack PLC Designer Pro offers multiple toolbars for convenient access to many functions
and instructions. These toolbars can be displayed or hidden using menu Edit > Toolbars. This
section describes various tool bars available in EZRack PLC Designer Pro. For more information
about these options see the MENU Section 2.5.

 Open Project

 Save Ladder

 Save Project

 Cut

 Copy

 Paste

 Undo

 Redo

 Toggle Project View

 Print

 About

 Help

 Zoom Default

26

2.3 Instructions Toolbars

2.3.1 Relay/Boolean Operations
The Instructions Toolbar consists of icons for all the
instructions available for Relay type instructions.
These commands are also found in, and accessible
from, the Main Menu > Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 Normally Open Contact

 Normally Closed Contact

 Positive Contact

 Negative Contact

 Normally Open Coil

 Normally Closed Coil

 Set Coil

 Reset Coil

 Normally Open Contact – Immediate Input

 Normally Closed Contact – Immediate Input

 Normally Open Coil - Immediate Output

 Normally Closed Coil - Immediate Output

2.3.2 Compare Operations
The Compare Operations Toolbar consists of icons for
all the instructions available for Compare Operations.
These commands are also found in, and accessible
from, the Main Menu > Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 Equal To

 Not Equal To

 Greater Than

 Less Than

 Greater Than or Equal To

 Less Than or Equal To

 Limit

 Compare Values

27

2.3.3 Math Operations
The Math Operations Toolbar consists of icons for all
the instructions available for Math Operations. These
commands are also found in, and accessible from, the
Main Menu > Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 Add

 Subtract

 Multiply

 Divide

 Modulo

 Absolute Value

 X=Y Conversion

 Format Conversion

 Advanced Math

2.3.4 Bitwise Operations
The Bitwise Operations Toolbar consists of icons for
all the instructions available for Bitwise Operations.
These commands are also found in, and accessible
from, the Main Menu > Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 And

 Or

 XOR

 Not

 Shift Left

 Shift Right

 Rotate Left

 Rotate Right

28

2.3.5 Move Operations
The Move Operations Toolbar consists of icons for all
the instructions available for Move Operations. These
commands are also found in, and accessible from, the
Main Menu > Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 Move Data

 Move Block

 Block Fill

 Move Table of Constants

 Bit Move

2.3.6 Timer/Counter/Drum

The Timer/Counter/Drum Operations Toolbar consists
of icons for all the instructions available for Timed
Operations. These commands are also found in, and
accessible from, the Main Menu > Instructions.
All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 Timer

 Counter

 Drum

2.3.7 Program Control Operations
The Program Control Operations Toolbar consists of
icons for all the instructions available for Program
Control Operations. These commands are also found
in, and accessible from, the Main Menu >
Instructions.
All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 Jump

 For Loop

 Next

 Call Subroutine

 Return (from a subroutine)

2.3.8 String Operations

The String Operations Toolbar consists of icons for all
the instructions available for String Operations. These
commands are also found in, and accessible from, the
Main Menu > Instructions.
All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 String Move

 String Compare

 String Length

 Pack String

 Unpack String

29

2.3.9 Communications Operations

The Communications Operations Toolbar consists of
icons for all the instructions available for
Communications Operations. These commands are
also found in, and accessible from, the Main Menu >
Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 Open Port

 Send to Serial Port

 Receive From Serial Port

 Close Port

 Send to Marquee

 Modbus Master

2.3.10 Data Log Operations

The Data Logging Operations Toolbar consists of icons
for all the instructions available for Data Log
Operations. These commands are also found in, and
accessible from, the Main Menu > Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 Log to File

2.3.11 Datatype Conversion
Operations

The Datatype Conversion Operations Toolbar consists
of icons for all the instructions available for Datatype
Conversion Operations. These commands are also

found in, and accessible from, the Main Menu >
Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 X=Y Conversion

 Format Conversion

2.3.12 Process Alarms / Faults
Operations

The Process Alarms / Faults Operations Toolbar
consists of icons for all the instructions available for
Process Alarms / Faults Operations. These commands
are also found in, and accessible from, the Main
Menu > Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 Alarm

 User Defined Faults

30

2.3.13 Analog Operations

The Analog Operations Toolbar consists of icons for
all the instructions available for Analog Operations.
These commands are also found in, and accessible
from, the Main Menu > Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 Ramp Generator

 Scale (Linear)

 Scale (Non-Linear)

2.3.14 Function Blocks Operations

The Function Operations Toolbar consists of icons for
all the instructions available for Function Operations.
These commands are also found in, and accessible
from, the Main Menu > Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 Alarm

 Change of Values

 Compare Values

 Find Min & Max Value

 Flasher

 Limit

 Ramp Generator

 Scale (Linear)

 Scale (Non-Linear)

 String Pack

 String Unpack

 User Defined Faults

2.3.15 IIoT Operations

The IIoT Operations Toolbar consists of icons for all
the instructions available for IIoT Operations. These
commands are also found in, and accessible from, the
Main Menu > Instructions.

All the icons for instructions shown in this section will
be described in detail in Chapter 3 – RLL Instructions.

 IIoT (MQTT) Publish

31

2.4 PLC TOOLBAR
The PLC Toolbar consists of icons for all the PLC hardware related functions.

2.4.1 Project Operations
The Project Toolbar consists of icons for all PC to PLC commands. These commands are also
found in either Main Menu > File or Main Menu > PLC. Please see description under Menus for
details of these functions.

 Write to PLC

 PLC Information

 Reboot PLC

 PLC Time and Date

 COM Configuration

 OEM Packager

2.4.2 Online / Simulate Operations
The Online / Simulate Toolbar consists of icons for going online with the PLC. You can also
simulate your project with a virtual PLC. These commands are also found in Main Menu >
Monitor. This functionality will described in detail in Chapter 4 – Simulating / Monitoring /

Debugging PLC Logic.

a. Online

b. Simulate

c. COM Configuration

2.4.3 Debug Operations
The Debug Toolbar consists of icons for going debugging your project. These commands are also
found in Main Menu > Monitor.

 Start Debug

 Run Debug

 Single Step

 Enable Outputs

32

2.5 MENUS
The Main Menu bar consists of the following menus:

Each of the above menus has a pull-down menu with further available options which will be
described in this section.

2.5.1 File Menu
When you click onto the File Menu, you can access the following functions:

Open Project
To open an existing project or to create a new project
while in a programming window, click on File > Open
Project. The Step 1, Project Information dialog box
will appear. Click on one of the SELECT ACTION
buttons. Choose from the available project files or
enter a new Project Name. Click on OK to open the
project, or Exit to quit without opening.

Close Project
Click on File > Close Project to quit the current
project.

Save Ladder
Click on File > Save Ladder to save the current ladder
logic only.

Save Project
Click on File > Save Project to save the current project. Ladder, Project
Attributes and databases will all be saved.

Copy Project As…
Click on File > Copy Project As... to create a copy of your project under another name. Note:
Current save file will remain open.

Save Project As Protected…
Click on File > Save Project As Protected to save the current project as a password protected
file. The Protection Password dialog box will appear, as shown on the following page:

33

Once saved, if you attempt to open this project again or read
this project from an EZRack PLC, you will then be prompted to
enter your password, as shown below:

The password protection feature will prevent unauthorized users from viewing/editing the
project, but will still allow a user to read from or write to an EZRack PLC.

In the event that a user should not have
access to edit a project, but have the
ability to write to an EZRack PLC, click
Cancel in the window above. This will
provide the option to transfer the project
to the EZRack PLC, as shown.

Click Yes, and you will be prompted to
transfer your project, as shown here.

To Transfer your project first make sure the
PC to PLC Connection selection is set to the
configuration you are using. For serial cables
or Micro-USB cables use the correct COM
port. For Ethernet make sure the correct IP
address is entered.

34

Copy Rungs…
When you click on File > Copy Rungs… following window
will appear.

Using the Copy Rungs options you can copy rungs from
another project into your existing project. Please select the
rungs you would like to copy from the source project. Then
select the place you would like to copy them to. If copying
between Main Logic just select main logic. Otherwise select
the subroutine you wish to copy to.

Transfer to PLC...

Transfer to PLC allows you to transfer the current
(open) project to the PLC connected to your
computer.

If you would like to password protect this project
on the PLC, select and input your password here.
Note: There is no admin password therefore if you
forget the password you cannot read back this
project.

Please make sure to configure your PC to PLC
communication per what the connection is. See the
communication options table below for more
information.

Communication Options Table

Communication
Type

PC to PLC Connection Option

Functionality

Transfer
to PLC

Read from
PLC

Monitor PLC
(Online)

Debug PLC
(Online)

Upgrade
Firmware

Serial Cable (EZ-
PGMCBL)

Serial (Select Com Port) ✓ ✓ ✓ ✓ ✓

Micro-USB
Cable

Serial (Select Com Port) ✓ ✓ ✓ ✓ ✓*

Ethernet
Ethernet (Input IP
Address) ✓ ✓ ✓ ✓ ✓*

EZ-WiFi AVG WiFi ✓ ✓ ✓ ✓ ✓*

USB Drive
USB Drive (Create USB
file) ✓ X X X ✓*

✓* Note: Upgrading using these methods requires the EZRack Editor v2.1 or higher and the firmware on the EZRack

PLC to be vA.0.297 or higher. If try to upgrade from vA.0.256 or lower these methods will not work.

35

Create OEM Package…
Create OEM Package allows you
to create an executable file
which can be used without
EZRack PLC Designer Pro to
transfer both the PLC project
and PLC firmware (if need be) to
the EZRack PLC.

This screen allows you to
configure display settings for
this OEM exec file. Also here you
attach the firmware if needed.
After clicking OK the packager
will create the file which can
then be sent to your user.

Create USB Loader File…
The create USB Loader File option can be used to load a PLC program to the EZRack PLC over an
USB drive. To do so please follow the directions below.

Load PLC project over USB Drive (Creating USB Loader File & Loading file to EZRack PLC):
1. To create USB Loader File click on File > Create USB Loader File. The following dialog will

appear.

2. Use the Browse option to navigate to navigate to the USB drive.
3. Click the Create USB Project FIle to create the avg.plc file(file must be named avg.plc to

function).
4. The USB is now ready to be used.

36

How to use USB to Load project onto EZRack PLC
5. Please turn off the EZRack PLC.
6. Insert the USB into EZRack PLC.
7. Apply power to the EZRack PLC. Upon power up the PLC project will be transferred to

the PLC.
Note: Only 1 file can exist on the USB at a time to be loaded to the PLC.

Create USB Firmware File
There may be occasional upgrades to your EZRack PLC internal software, also referred to as the
Exec or Firmware. This can be done over USB drive. Firmware can also be updated over other
communication, please see Upgrade Firmware section. To do so please follow the direction
below.

To Upgrade Firmware (Creating USB Firmware File and Upgrading EZRack PLC):
1. Back up the user program currently stored in the PLC and save to disk. Firmware

upgrade will clear the project on the PLC.
2. Go to File > Create USB Firmware File. After clicking you get the following dialog.

3. Use the first Browse to navigate (click the on Browse button) to the new firmware file

(.hex_plc file).
4. Use the second Browse to navigate to the USB drive. Note: This file should go into the

main folder of the USB drive, please do not hide it within sub-folders.
5. Once both Firmware file and Create location have been selected please click the Create

USB Firmware File.
6. The USB should now have a file ezr_fw.mme file which is your firmware file. Note: The

USB should not have a USB Loader file (avg.plc file). If it does please delete this file.

37

How to use USB to Upgrade EZRack PLC
7. Insert the USB with the file ezr_fw.mme on it into the EZRack PLC. Note: This will clear

the PLC project.
8. Wait, the EZRack PLC will start alternatively flashing the red and yellow LED while it is

upgrading the firmware.
9. Once the firmware upgrade is finished the PLC will automatically restart.
10. You will now have to download the project. Or you can use a different USB to load the

project back on the PLC.

Print
When you click on the Print menu item, you will
be asked if you want to save the project. Click
on Yes or No. Once you click Yes or No it will
take you to another screen as follows:

Using this screen, you can choose if you want to
print the Tag Database or the Rungs in the
ladder logic program

Print Setup
Choose or change your print settings here.

Exit
Click on Exit to quit the program.

38

2.5.2 Edit Menu
When you click onto the Edit Menu, you can access the following functions:

Undo / Redo
The Undo command is used to reverse the previous
action. This function must be performed next in order
for the action to be undone. The undo command goes
back sixteen levels of undo. Redo will “redo” the
previously undone action.

Cut
This allows you to Cut (remove) a selected item(s) to
the clipboard.

Copy
This allows you to Copy (without removing) a selected
item(s) to the clipboard.

Paste
This allows you to Paste a selected item from the clipboard onto the displayed screen.

Select All
Click on Select All to select all items on the displayed screen.

Delete
Click on Delete to remove a selected item without placing it on the clipboard.

Edit
Select an object and then click on the Edit command to make changes to an object’s /
instruction’s characteristics.

39

Toolbars
Click on Toolbars to see the available menu where you can
click on the desired toolbars to be displayed on the toolbar
section of the main screen.

When Edit Multiple
Toolbars… is selected, it
further takes you to the
following screen which
allows you to hide/select
multiple toolbars from
one dialog box. You can
also restore the default
toolbar configuration
here.

Default Tag Data Type
Default Tag Data Type allows you select the default Tag (memory location of PLC) type. Every
time a new Tag is added after this, it will have the default type as chosen by this command
through the following screen:

Go to Rung…
Use this option for a convenient way to quickly navigate to the desired rung. The menu will open
the following dialog box:

40

Go to Label…
Use this option to go the specified label as shown in the following screen:

Show Address on Instruction

The EZRack PLC can show the address of the Tag or not show based on this

selection. If this is selected the tag address is displayed otherwise it is
hidden.

For Example:

Tag Name and Address Tag Name Only

Address Suggestion Preferences
The EZRack PLC will suggest addresses based on the select starting point here. Initially it will start
from Address 1 and suggest the next available address. The user can at any point tell the software
to start suggesting from a different starting point. For example if starting address is set to 200
then if 200 is available that will be the next suggested address, if it is not then it will go to 201 and
so and so forth.

41

2.5.3 View Menu
When you click onto the View Menu, you can access the following functions:

Syntax Check – Current Logic…
Use this option to display any errors present in the
logic currently being displayed on the screen. Once
selected, it displays the following message if NO errors
are found.

If there are errors in the current logic, then it displays a similar screen as below with all the
errors present along with their position (e.g. rung etc.):

Syntax Check – All Logic…
When using Syntax Check – All Logic, EZRack PLC Designer Pro checks the entire ladder logic
program and displays the errors if found as shown above for Syntax Check – Current Logic.

Main Logic…
Click on this option to display the Main Logic in the Main Window of EZRack PLC Designer Pro
when Interrupt or Subroutine logic is present in the Main Window. Main Logic, as the name
suggests, is the main logic of your control program.

You can place some of the functions as Subroutine Logic, which is then called from main logic.
You may want to use Subroutine to write some logic once and use at many places in your main
logic (by calling it), or just to organize your main logic in modules.

The interrupt logic is a special logic section, which is executed when an external interrupt
occurs. The purpose of interrupt logic is to provide a fast response to some time-critical events.
You will need to use the Interrupt input module to trigger execution of Interrupt logic.

42

Interrupt Logic…
Click on this option to display Interrupt Logic in the Main Window of EZRack PLC Designer Pro.

Subroutine Logic
Click on this to display the Subroutine Logic in the Main Window of the EZRack PLC Designer Pro.

Note: To display and switch between Main Logic, Interrupt
Logic, and Subroutine Logic, you can also use the Project
Window to display the appropriate logic in the Main Window.

43

2.5.4 Subroutine Menu
Subroutines have two main uses. One, you can write some commonly used functions once, and
use those multiple times within the main logic by calling the subroutine. Second, you can use
subroutines to write modular logic. You can have multiple subroutines within a project. You can
call a subroutine from another subroutine. Such nested calls cannot exceed 8 levels deep. Total
maximum number of subroutines is 64. When you click onto the Subroutine Menu, you can
access the following functions:

Add
Use this function to add a Subroutine.

Rename
This function can be used to rename a Subroutine.

Delete
This function can be used to delete an existing subroutine.

Note: Subroutines can also be added by right clicking on
Subroutine in the Project Window.

44

2.5.5 Rung Menu
When you click onto the Rung Menu, you can access the following functions:

Insert New Rung
Click on this to add a new rung to the main ladder logic program.

Insert Rows
This function is used to add single
or multiple rows within a rung. In
order to use this function, first
select the RUNG in which you wish
to add single or multiple rows. Then
click on the sub menu as follows to
add the appropriate number of
lines within a RUNG.

If you click on Insert Multiple Rows…, the following screen will appear and will require the
number the rows to be added within a RUNG.

Delete Row
Use this function to delete excessive rows from a RUNG.
You must select a RUNG from where a row is to be
deleted. If Logic exists on the row being deleted, it will
prompt you with the following message:

Cut
Use this function for cut and paste functions for RUNGS present in ladder logic. Before you apply
this function you must select the desired RUNG which is to be Cut. Once RUNGS are cut using
this function, they can be pasted into the desired location using the Insert Copied Rungs
function.

Copy
This function is used to Copy the selected Rungs present in ladder logic. Once copied they can be
pasted using the Insert Copied Rungs function.

45

Insert Copied Rungs
This function is used to paste RUNGS that have been Cut or Copied using the Cut and Copy
functions in the Rung menu.

Delete
Use this function to delete the selected rungs from ladder logic.

Insert Label / Comment
Use this function to insert Label/Comment for a RUNG whose label and or comment were
deleted using the Delete Label / Comment function.

Edit Label / Comment
Use this function to add Labels and Comments for individual rungs. Labels are useful when using
the Jump instruction, which allows you to skip RUNGS and go to the one specified in Jump
instruction.

Clear Label
Can be used to clear label of an individual RUNG.

Clear Comment
Can be used to clear the comments of an individual RUNG.

Delete Label / Comment
This function can be used to delete a Label and Comment for an individual RUNG. When
deleted, a rung can be re-labeled / commented by using the Insert Label / Comment function in
Rung Menu > Insert Label/Comment.

Show Label / Comment
Use this function to Hide or Display the Labels and Comments for all the RUNGS present in the
ladder logic program.

46

2.5.6 Instructions Menu
All the Instructions used for Relay Ladder Logic are
explained in detail in Chapter 3 - RLL Instructions. When
clicked on appropriate Instruction, the EZRack PLC Designer
Pro allows you to place that instruction in ladder logic by
clicking in the Main Programming window.

 Relay/Boolean Instructions Menu

Compare Instructions Menu

 Math Instructions Menu

Bit Logic Instructions Menu

47

Move Instructions Menu Timer/Counter/Drum Instructions Menu

 Program Control Instructions Menu
 String Operations Menu

 Communication Instructions Menu

 Data Logging Instructions Menu

 Datatype Conversion Instructions Menu

 Function Block Instructions Menu

 Process Alarms/Faults Instructions Menu

 Analog Instructions Menu

 IIoT Instructions Menu

Line
The Line Tool allows you to connect instructions and objects in the ladder logic.

Selection
Click on this function to switch back to the Selection Tool from the Line Tool

48

2.5.7 PLC Menu
The PLC menu allows you to access and control the EZRack
PLC. In order to utilize most of the functions present in this
menu, EZAutomation’s EZRack PLC must be connected to the
programming PC. If the corresponding PLC is not connected
to the programming PC, the following error messages will
appear:

Note: For all functions in the PLC Menu, upon communication timeout EZRack PLC Designer Pro
will inform you that the function could not be completed due to a communication issue.

Information
Click on this function to acquire
information for the PLC connected to
the programming PC.

When connected, it displays
information regarding Status, Firmware
Revisions, MAC Address, IP address and
Memory used as shown in the following
screen:

Reboot
Use this function to perform a Warm Reboot of the corresponding PLC while connected to the
programming PC as shown in the following screen:

49

Clear Program
This function is used to clear the existing program present in the memory of the PLC. When
used, it will prompt for confirmation as follows:

Warning: If you select Yes, the corresponding PLC’s program will be cleared!

Time/Date
This function can be used to Monitor and Change the current Time and Date settings on a PLC.
The PLC’s clock can be set for either 24-hour or 12-hour along with the option to synchronize
the PLC’s clock with the clock of the programming PC as shown below:

Start PLC
Use this function to Start the corresponding PLC into RUN mode.

Stop PLC
Use this function to Stop the corresponding PLC when present in RUN/Program mode.

50

COM Configuration…

This function is only available when programming in Offline
mode. Use this function to select the COM
port / Ethernet’s IP address of your PLC
based on how you are connecting i.e. via
the COM port or Ethernet port. Please see
the Communications Options Table for
more information. The following screen
appears when this function is selected:

 Serial Communication refers to communication through serial cable (EZ-PGMCBL see
Appendix 1) and through Micro-USB cable.

 For Ethernet communication, please enter the IP address of your corresponding PLC.

 The AVG WiFi option will automatically detect any EZ-WiFi module and then it can be
used exactly like the Ethernet and Serial communication options.

Communication Options Table

Communication
Type

PC to PLC Connection Option

Functionality

Transfer
to PLC

Read from
PLC

Monitor PLC
(Online)

Debug PLC
(Online)

Upgrade
Firmware

Serial Cable (EZ-
PGMCBL)

Serial (Select Com Port) ✓ ✓ ✓ ✓ ✓

Micro-USB
Cable

Serial (Select Com Port) ✓ ✓ ✓ ✓ ✓*

Ethernet
Ethernet (Input IP
Address) ✓ ✓ ✓ ✓ ✓*

EZ-WiFi AVG WiFi ✓ ✓ ✓ ✓ ✓*

USB Drive
USB Drive (Create USB
file) ✓ X X X ✓*

✓* Note: Upgrading using these methods requires the EZRack Editor v2.1 or higher and the firmware on the EZRack

PLC to be vA.0.297 or higher. If try to upgrade from vA.0.256 or lower these methods will not work.

Switch Monitor Mode / Switch to Edit Mode
Click on this function to switch between Monitor and Edit mode when connected to the
corresponding PLC. Please see more information on Online Edit Mode and Monitor Mode in
Chapter 4.
Note: Monitor mode will not allow any editing of the ladder logic program present in the PLC.

PID Monitor...
Click on this to open the dialog box for the PID Monitor function. Please see more information in
Chapter 6 – PID.

51

2.5.8 Setup Menu
When you click onto the Setup Menu, you can access the
following functions:

Tag Database…
The EZRack PLC Designer Pro will auto fill tag addresses for
you. This functionality is explored more in section 3.3.2
Auto Generated / Auto Fill Tags.

Tag Database allows you to view and add/edit current and
new Tags (memory addresses) of your corresponding PLC.
Click on this function to display the following screen:

As shown the Tag Database will display all the Tags that have already been entered for your PLC.
The tag database will be prepopulated with the PLC system tags and any output / input module
tags for any module that has been configured in your I/O setup. For more information please
see the I/O Configuration section.

52

Add Tag
Clicking onto the Add Tag button will
display this screen:

As shown in the Add New Tag Details
screen, you can add the Tag Name
and change the Tag Address. Based
on the tag datatype the Memory type
will change, also the Tag address will
be preselected for you but you can
change it. For more information
please see the section 3.3.2 Auto
Generated / Auto Fill Tags. You can
also specify the Initial Value of the
Tag that is being added, where the
Initial Value is the value that the PLC
assumes for this particular Tag when using it the first time.

Tag Name: Every memory address (Tag) can also be assigned a Tag Name which is used while
programming the PLC. E.g. “O1” is the memory location of physical output 1 present on an IO
module. The tag name of prepopulated tags can also be changed. For I/O module tags the tag
name has a specific format of M#.Tag_Name where # refers to the module position. The tag
name is then used in all instructions to select this tag. Other than in specified cases "." cannot be
used. Refer chart below for information on prepopulated tags and their format.

Address Suggestion Preference
The EZRack PLC will suggest addresses based on the
select starting point here. Initially it will start from
Address 1 and suggest the next available address.
The user can at any point tell the software to start
suggesting from a different starting point. For
example if starting address is set to 200 then if 200
is available that will be the next suggested address,
if it is not then it will go to 201 and so and so forth.

Tag DataType: The tag datatype will determine the Memory Type and how many address it will
consume in memory. Discrete datatype will use S memory type, everything else will use R
memory type. I/O tags are automatically generated based on the select I/O modules in the I/O
Configuration.

53

Address: Address is used to specify the actual Tag (memory address) of the corresponding PLC.
For example, O1 refers to Output 1, R1 refers to internal register 1, SR1 refers to system register
1 etc. Please see section 3.3.1 Memory Map for more information on address ranges and
specifications.

Initial Value: When initial value is enabled you can enter the value that the tag will start with
upon program load. All tags are retentive so upon power cycle the tag will retain the last value it
was set to. Note: Retentive tags are battery backed therefore please make sure your battery has
power.

Example:
As described above, the
following screen is an example
of adding a valid Tag whose
Address is S1, Data Type is
Discrete, and the Tag Name is
Light1. Also, the Initial Value has
been assigned to be ON or “1”.

When you have entered your
Tag information, click on Apply
Changes to add the new Tag
created by Edit Tag Details. Click
Close to return back to the main
Tag Database screen. The # of
Characters can only be specified
when using an ASCII type Data Type for a word register and the maximum number of characters
is 126. The main Tag Database screen also offers features for easy handling of Tags entered in
the database. The section below describes all the functions available in this screen.

Selection Menu

You can either use the buttons in the bottom row or you can right click on the tag to access the
selection menu.

Add Tag: Use this to add new tags to the database.

54

Add Bit-In-Register Tag: This will add bit within words tag to the tag database. Will only function
for the first 16 bits of a word, please select the needed word before pressing the tag.

Edit Selected Tag: Will bring up Edit Tag Details screen and you can change the Tag Name, Tag
Data Type, Address and Initial Value for the Tag.

Duplicate Selected Tag: This option will bring up the
duplicate tags dialog. Using this the tag can be
duplicated either with the same address or
incrementing the address by a set amount.

Delete Selected Tag: This will delete the selected tag.

When you select a tag in the tag database you
will have the following options: Edit Selected
Tag, Duplicate Selected Tag, and Delete Selected
Tag.

Search and Replace

The Search and Replace function can be
used to find and replace Tags present in
the Tag Database. This allows you to
easily make changes to Tags previously
entered in the database.

Filters

55

Filters allow you to only display certain tags in the tag database. Use the Show All Tags to go
back to default view with all tags visible.

Discrete Inputs: Will only show (I) discrete inputs.

Discrete Outputs: Will only show (O) discrete outputs.

Analog Inputs: Will only show (IR) analog inputs.

Analog Outputs: Will only show (OR) analog outputs.

Discretes: Will only show (S) internal discretes.

Registers: Will only show (R) internal registers. Includes bit within words for internal registers.

Floats: Will only show floating point tags.

Strings: Will only show string tags.

System Discretes: Will show all System Discretes.

System Registers: Will show all System Registers.

Highlight Unused Tags
When this check box is checked, it will highlight all the tags in the PLC database which are not
being utilized by an instruction. When checked it will highlight unused Tags as follows:

56

As shown in the above screen, all the Tags not being utilized anywhere in the PLC program will
be highlighted.

You can also delete these Tags which might be present in access by clicking on Delete Unused
Tags which will prompt the following message:

If YES is selected, the corresponding Unused Tags in the database will be deleted.

Table of Tag Formats
This table describes all the different possible tag formats that exist. While it may look
complicated most of these are auto created for you so the user only needs to create the basic
tags. Note: All tags can have their name modified except for system and reserved tags.

Tag Name
Structure

Possible Data
Types

Description How Created Example

TAG_NAME Discrete or
Register

This is the basic tag the suer can create and
modify the address of.

User Created. LIGHT, VALUE1

TAG_NAME.# Discrete (Bit
within word)

Bit access to the register. Works with Registers
only.

User Created. VALUE1.0

TAG_NAME.RES# Register Reserved tags for internal calculations. Auto Created for certain
function blocks.

VALUE1.RES1

M#.INPUT_# Discrete Module # Inputs. User can changed name. Created during I/O Config. M1.INPUT_1

M#.OUTPUT_# Discrete Module # Outputs. User can changed name. Created during I/O Config. M3.OUTPUT_7

M#.INPUT_REG_# Discrete Module # Input Registers. User can changed
name.

Created during I/O Config. M7.INPUT_REG_3

M#.OUTPUT_REG_# Discrete Module # Output Registers. User can changed
name.

Created during I/O Config. M5.OUTPUT_REG_5

M#.TAG_NAME Discrete or
Register

Specialty module # tags. User can changed
name.

Created during I/O Config. M4.CNTR1_COUNTS

_SD_TAG_NAME Discrete System discrete. Always in project. _SD_FIRST_SCAN

_SR_TAG_NAME Register System register. Always in project. _SR_MINUTES

57

I/O Address Format for EZRack PLC

58

Tag Cross Reference…
This function is extremely useful for
identifying the objects and instructions
utilizing a certain PLC Tag in the ladder logic
program as shown in the following screen:

As shown, Tag Cross Reference provides all
the details where and how many times a
certain Tag is used in the ladder logic
program. In the example shown, the “CLOSE”
discrete is being used in two instructions: The
Log Data to File instruction is present in Rung
2, Row 3, Column 4 and the Normally Closed
Contact instruction is present in Rung 2, Row
3, Column 1.

Tip: Use the Cross Reference function before changing the functionality of any Tag. This will
allow you to figure out very quickly where and how many times that register is utilized in the
ladder logic program.

Tag Cross Reference By Ladder Logic…
This function allows you to see all the tags
used in specified locations. You can therefore
cross reference the tags used in the message
database or PID Loop with the ones used in
your main logic, interrupt logic and
subroutines.

59

Read AVG Panel/PLC Tags…

This function is particularly useful when
using EZRack PLC with AVG Panels. Using
this function, the Tag Database of a project
can be very easily populated by
automatically reading from a pre-existing
Tag Database of an AVG Panel or another
EZRack PLC project. Click on this function to
display this screen.

As shown in the example screen, you can
decide which pre-existing project is to be
used for copying and adding the Tag
information to the existing Tag Database.
Click on the Browse button to select the
directory and the name of the project to be
utilized for copying the Tag information.
As shown in the Read AVG Panel/PLC
Tags… screen, you also have the option to
select the action in case the Tag being

copied to the Tag Database already exists.

Export Tags
Click on this function to expand this menu as shown:

When Comma delimited is selected, this function exports all the Tags in the Tag Database into a
CSV file as specified by the user in the following screen:

60

When To Excel… is selected, this function automatically opens Excel software on the
programming computer and exports all the Tags in the Tag Database as shown below:

Note: When using the “To Excel…” function, the EZRack PLC Designer Pro software automatically
opens a new “Book1.xls” file and exports the Tag information. Also the file is NOT saved on the
hard drive unless you manually save it. You must have Microsoft Excel software installed on your
computer to utilize this function.

Import Tags
Click on this function to expand this menu as shown:

When Comma delimited is
selected, this function imports
all the Tags present in a CSV
file as specified by the user in
the following screen:

61

Once the user has selected a CSV file which is to be
imported, the following screen will appear and
prompt user as follows for more information:

Select first row contains header information if the
csv file has header information like Tag Name, Tag
Address, etc.

Select only Import address for tags that have the same Name and Data Type if you want to
overwrite the tag address information of tags already in the project.

When Excel format… is selected,
this function imports all the Tags
present in an Excel file as
specified by the user in the
following screen:

Once the user has selected an Excel file which is to be
imported, the following screen will appear and
prompt user as follows for more information:

Please make sure to map the correct headers to the
corresponding Tag database header.

Select first row contains header information if the csv
file has header information like Tag Name, Tag
Address, etc.

Select only Import address for tags that have the
same Name and Data Type if you want to overwrite
the tag address information of tags already in the
project.

62

Project Options…
Click on the Miscellaneous button to
select options for Multiple Drop,
Clearing registers on program upload,
and Displaying information for
warnings as shown in the following
screen:

Multiple Drop: This option allows you
to add multiple elements after
selecting the element e.g. select NO
Contact and put 5 of them in your
ladder logic.

Clear Register on program upload: When the project is transferred to the PLC, this options
means all the registers will be cleared and set to initial value of the transferred project (no initial
value equals 0).

Display duplicate warning: EZRack PLC Designer Pro allows you to use coils with the same
address in multiple places but unless done correctly this type of coding can cause problems.
Therefore this option will warn you about these instances and if there is no need please use coils
such that there are no such instances.

Password: To always require a password for project read back from PLC select this option and
enter the password. Note: There is no admin
password therefore if you forget the
password you cannot read back this project.

Clear registers: The EZRack PLC has
retentive registers therefore upon power up
the registers are set at the last known
values. If you would like to clear registers
upon power up you can use these options to
select the specific range of registers to clear.
Note: Retentive tags are battery backed
therefore please make sure your battery has
power.

The Application Color tab allows the user to edit the color and configuration for the Ladder Logic
programming window as shown in the screen above.

63

I/O Configurations…
Click on this function to select the I/O configuration for your corresponding PLC as shown in the
screen below:

The Module slot positions are identified
as M1, M2, M3 etc., on the I/O base. The
dialog box shows only the available
module positions for the selected I/O
base. For example, a 3-module base will
show only M1-M3 positions, while a 7-slot
base will display rows M1-M7.

To Manually Configure a module on a position, double click the row corresponding to the
position number (say M1) or click the Add/Edit button.

OR

You can also Auto Configure the IO Modules by clicking the “Auto Configure IO Modules”
button.

Manual Configuration
After clicking the Add/Edit button you will get the Edit
IO Module Data Dialogue Screen. Select the module
type from the available modules and it’s I and/or O (IR
and OR for analog) addresses from respective drop
downs. You select the start address of the module,
and the software computes and fills up the end
address of the module automatically.

64

Auto Configure
For Auto Configure please make sure that the
PC and PLC are connected (either serially, over
micro-USB, or over Ethernet).

After clicking the “Auto Configure IO Modules”
button you will get the following dialog.

The EZRack PLC Designer Pro will read back the PLCs configuration and the table above will
display the results. It will also display the rack size detected in the configuration.

65

Current Configuration -- This the currently selected configuration in the EZRack software.

Detected Configuration -- This the detected configuration of the EZRack PLC.

Select Configuration -- Please select whether to use the current configuration in the software or
the detected configuration. You can also select All in the section right under the title.

Final Configuration -- This will display the configuration which will be now configured in the
software.

Please note: there are certain module families which include multiple modules of different types
like “Sinking” or “Sourcing” for Digital Outputs and “Voltage” or “Current” for Analog modules
cannot be differentiated. Therefore please make sure the correct module is selected under the
detected configuration.

Ethernet Setup...

Select this function for defining the Ethernet
settings for your corresponding PLC. When
selected, the following screen will be shown.

As shown, you can specify the IP Address, Subnet
Mask, and Gateway for the corresponding PLC. To
set the PLC Ethernet parameters please use either
serial cable, Micro-USB cable, or AVG WiFi.

You can also configure the EZRack PLC to use a
DNS server. Please enter the IP address of the
DNS servers here. If you do not want to use this
option please leave them as 0.0.0.0.

Note: You cannot set Ethernet parameters over
Ethernet.

Note: Transferring a project to the PLC does not set these parameters.

PID...
Click on this to open the PID Setup dialog box (explained in greater detail in Chapter 6).

66

Upgrade Firmware
There may be occasional upgrades to your EZRack PLC internal software, also referred to as the
Exec or Firmware. (Check the EZAutomation website periodically for information about software
and firmware upgrades.)

To Upgrade Firmware (Serial, Ethernet and Micro-USB):
1. Back up the user program currently
stored in the PLC and save to disk. Firmware
upgrade will clear the project on the PLC.
2. Click on Upgrade Firmware and
navigate (click the on Browse button) to the
new firmware file (.hex_plc file).
3. Select the appropriate communication
option (please see table below) under PC to
PLC Connection and click on the OK button
to begin the upgrade.
4. If the PLC is running you will be asked to
stop the PLC. If the PLC is not stopped the
firmware upgrade will not happen.

67

5. On the next screen click continue to start the upgrade. The status bar will let you know

when the upgrade is complete.

Note: For Ethernet and Micro-USB the firmware will first download then an upgrade will
happen. You can cancel the upgrade only during download. When upgrade is happening on
the PLC the red and yellow LED will alternate flashing.

Note 2: If Ethernet or Micro-USB firmware upgrade fails then the firmware upgrade over a
serial cable will always work to fix any corrupted firmware.

To Upgrade Firmware (USB): Please see the Create USB Firmware File section.

Communication Options Table

Communication
Type

PC to PLC Connection Option

Functionality

Transfer
to PLC

Read from
PLC

Monitor PLC
(Online)

Debug PLC
(Online)

Upgrade
Firmware

Serial Cable (EZ-
PGMCBL)

Serial (Select Com Port) ✓ ✓ ✓ ✓ ✓

Micro-USB
Cable

Serial (Select Com Port) ✓ ✓ ✓ ✓ ✓*

Ethernet
Ethernet (Input IP
Address) ✓ ✓ ✓ ✓ ✓*

EZ-WiFi AVG WiFi ✓ ✓ ✓ ✓ ✓*

USB Drive
USB Drive (Create USB
file) ✓ X X X ✓*

✓* Note: Upgrading using these methods requires the EZRack Editor v2.1 or higher and the firmware on the EZRack

PLC to be vA.0.297 or higher. If try to upgrade from vA.0.256 or lower these methods will not work.

68

Message Database
The Message Database for EZRack
PLC Designer Pro is used for
populating a messages which can
be utilized with the Send to
Marquee instruction. Click on this
function to display the Message
Database Edit screen.

Note: For more information on
how to use the Send to Marquee
instruction please see Chapter 5.

Click onto the Add/Edit button to display the following
screen:

In the Add New Message window, add the details of
the message as shown. You can select the message
number, marquee address, message positioning, and
message text along with options for previewing the
messages exactly how they would appear on an
EZMarquee when sent. Click on Add New Message to
add the message to the database and continue the
same operation for all the messages that need to be
populated.

69

MQTT Setup…
The MQTT Setup allows you to configure the options for the Industrial Internet of Things (IIoT).
For more information about IIoT and how it works please see Chapter 8. To use the setup follow
the directions below:

The needed information for this setup is:

Information Type Description Example

Domain Name This is the broker URL. Used to find your
broker that you have configured.

m12.cloudmqtt.com

Port Number Port number that your broker uses. 16581

Client ID Individual connection ID. Needs to be different
for every client otherwise will encounter
problems. Can be random.

ee097f5c-fa36-4929-
9414-fad17b3df3bd

User Name Your configured username for EZRack PLC
connection to broker. Should be different for
every client.

Password Your configured password for EZRack PLC
connection to broker. Should be different for
every client.

Instruction to setup MQTT:

1. Go to Setup > MQTT Setup…. You will see the following dialog box appear.

2. Use the Domain Name Lookup
with the Domain Name from the
broker to find the Broker IP
Address.

3. Enter the port number from the
broker.

4. Select your keep alive interval if
wanted. See section 8.6 for more
information.

70

5. Enter a unique client ID or generate one using the Generate Unique Id button.
6. Enter the user name and password for your broker.
7. Go to the MQTT topics.

8. In the MQTT Topics use the Add Topic button to create the prefixes for your tags.

The publish instruction will publish the tagname as a topic but if you want to have
more topic information create the prefix here. For example:

Note: After this topic an “/” is appended

Topic: EZRack PLCPLC/Machine1
TagName: Speed

Published Topic: EZRack PLCPLC/Machine1/Speed

9. Now in your ladder logic add the IIoT (MQTT) Publish instruction and configure it.
For configuration options please see Section 3.3.16.

71

EtherNet/IP Adapter Setup…
The EZRack PLC supports Ethernet/IP Adapter communication. This communication is for the
EZRack to act as Adapter to external device Scanner. This section will define how to setup the
EZRack PLC and how to setup an Allen-Bradley PLC to act as Scanner to the EZRack PLC.

EZRack PLC Setup
To setup the EZRack to communicate as an Ethernet/IP Adapter follow the direction below:

1. Go to Setup > EtherNet/IP Adapter Setup... You will see the following screen appear:

2. This screen allows you to setup which tags are to be used for the Adapter. You can either

use a contiguous block of registers (example R1-R250) or you can select the registers you
would like to send. The maximum number is restricted to 250 Input and 250 Output.

3. Important information for the setup of Scanner is the Connection Parameters of the Input /

Output Assembly Instances and the Input / Output Word size. Make sure to setup this
information in your Allen-Bradley PLC after you have selected all tags that you will send and
receive.

72

System Discretes:

_SD_EIP_SCAN
NER_CONNECT
ED

SD26 Read Only Indicates when the EtherNet/IP Adapter is connected with
an EtherNet/IP Scanner.

_SD_EIP_SCAN
NER_TIMEOUT

SD27 Read Only Indicates when the EtherNet/IP Adapter connection times
out (after 3000 mSec)

System Registers:

_SR_EIP_
SCANNER
_IP1

SR21 Read
Only

This will have the IP address of the EtherNet/IP Scanner which is
connected to the EZ Rack PLC.

_SR_EIP_
SCANNER
_IP2

SR22 Read
Only

This will have the IP address of the EtherNet/IP Scanner which is
connected to the EZ Rack PLC.

_SR_EIP_
SCANNER
_IP3

SR23 Read
Only

This will have the IP address of the EtherNet/IP Scanner which is
connected to the EZ Rack PLC.

_SR_EIP_
SCANNER
_IP4

SR24 Read
Only

This will have the IP address of the EtherNet/IP Scanner which is
connected to the EZ Rack PLC.

Allen-Bradley Setup
To setup an Allen-Bradley PLC to communicate to the EZRack PLC please use RSLogix 5000.

1. In the selected project under your Ethernet option click to Add New Module.

2. In the Select Module Type find the Generic Ethernet Module. Select this module and the following

dialog will show up:

73

3. Add a name for your module and put in the Comm Format as Data INT. Also put in the IP Address of
your EZRack PLC.

74

4. Copy the Connection Parameters from the EZRack PLC to the Connection Parameters of the New

Module. Set the Assembly Instance Configuration to 1.

5. Click OK to create the module. In the Connection settings please use an RPI of 10 ms or more. A faster
RPI does work but is not as reliable. You can also choose to use any of the other settings all function
with the EZRack PLC.

6. After hitting apply you have created a connection between the EZRack PLC and the Allen-Bradley PLC.

As soon as both projects are transferred to their respective PLCs they will communicate together and
exchange the selected tag information. Note: Allen-Bradley tags will be in the Controller Tags area
under the name of the Generic Ethernet Module.

75

2.5.9 Monitor Menu
When you click onto the Monitor Menu, you can access the
following functions. These functions and there uses are
explored in more detail in Chapter 4. Note: Most functions are
not available unless you are Online or Simulating your project.

Go Online
Click on this function to go online with an EZRack PLC. The
EZRack PLC Designer Pro will communicate with the PLC using

the COM parameters setup in PLC>COM Configuration…. The EZRack PLC Designer Pro will
either transfer and Go Online with the currently open project or go online with the project that
is in the PLC. If you are transferring the currently open project you will get the option to save the
project that is on the PLC. Use this function before entering Monitor Mode or Debug Mode.
More information is in Chapter 4.

Simulate
Click on this function to simulate your currently open project without need for any external
hardware. After clicking this the EZRack PLC Designer Pro will transfer this project to the
simulator and then behave like you are Online with a PLC (No need for any PLC and does not use
configure COM parameters). When simulating you can also use Monitor Mode and Debug
Mode. More information is in Chapter 4.

Start Debug
Click on this function to start Debug mode where you can add break points to your logic to
examine what is happening. To start Debug Mode please be either Online with your PLC or
Simulating your project. More information is in Chapter 4.

Run
When in Debug Mode (need to Start Debug before this can be used) click on this function to Run
your logic. With no break point Run will start normal logic running. If there is a breakpoint then
Run will cause your logic to do 1 scan till your breakpoint where it will stop. Clicking Run again
will execute the rest of your logic till the next breakpoint. More information is in Chapter 4.

Single Step
When in Debug Mode (need to Start Debug before this can be used) click this function to single
step through your logic. Single step only works after you have reached a breakpoint. Before this
function can be used, Run needs to be clicked with a breakpoint added to your logic. This
function does not single step through rows, it will single step by rungs. More information is in
Chapter 4.

76

Enable / Disable Outputs
When in Debug Mode (need to Start Debug before this can be used) click on this function to
enable or disable your outputs. When debugging it might be useful to not have the PLC activate
your outputs therefore use this function to disable them. As soon as Debug Mode is left then
outputs will be re-enabled. More information is in Chapter 4.

Switch Monitor Mode / Switch to Edit Mode
Click on this function to switch between Monitor and Edit mode when connected to the
corresponding PLC. Please see more information on Online Edit Mode and Monitor Mode in
Chapter 4.

Note: Monitor mode will not allow any editing of the ladder logic program present in the PLC.

77

2.5.10 Window Menu
When you click onto the Window Menu, you can
access the following functions. This menu will also
list all the currently open windows (e.g. Main
Logic, Subroutine Logic, and etc.).

Close
Use this function to close the current ladder logic

window open in the main programming window. Double click on the ladder logic window in the
Project View window to show them again.

Close All
Use this function to close all the ladder logic windows open in the main programming window.
Double click on the ladder logic window in the Project View window to show them again.

Cascade
Click here to view open screen files in the window. Screens will cascade down the window,
overlapping each other, but with their title bars in view. This is helpful when you are making
changes to two or more screens at the same time. Click on the title bar of one of the screens to
bring it to the front. The title bar is grayed out in screens that are not currently active.

Tile
Click here to view open screen files in the window. Screens will be arranged within the window.
This is helpful if you want to copy or cut and paste objects or drawings between screens. The
title bar is grayed out in screens that are not currently active.

78

2.5.11 Help Menu
When you click onto the Setup Menu, you can access the
following functions:

Help Topics…
Click on Help Topics to view the help topics for the EZRack PLC Designer Pro Software. The help
window is in Compiled HTML format. Use the Contents tab to view help topics by category. Click
on the Index tab to view an alphabetical list of all help topics. Click on the Search tab and enter a
word or words to search the help topics for.

About EZRack PLC Designer Pro…
Click on About EZRack PLC Designer Pro for copyright, manufacturer, and version number of the
EZRack PLC Designer Pro Software.

79

2.5.12 Right-Click Menus
In addition to the drop-down menus mentioned earlier in this section, there are two more
menus available to give you more options while working with your EZRack PLC Designer Pro.
They can be accessed by right-clicking in two different areas in the Main Programming Screen.
These menus change based on what the current EZRack PLC Designer Mode is (Offline or
Online). The Online menus will be discussed in Chapter 4, the menus settings discussed here are
for Offline Mode only.

Rung Edit Right Click Menu
The first menu can be accessed by right clicking in the rungs
area of the Main Programming Screen.

When you right click in the Rung area (in the square above)
the following menu will appear:

Through this menu, you can access the following functions:
Insert New Rungs, Insert Rows, Delete Rows, Cut, Copy,
Insert Copied Rungs, Delete, Insert Label/Comment, Edit
Label/Comment, Clear Label, Clear Comment, Delete
Label/Comment, and Show Label/Comment.

These functions are the function that are available in the
Rung Menu of the Main Menu. Please see Section 2.5.5 of
this chapter.

Instruction Edit Right Click Menu
The second menu can be accessed by right clicking in the
Main Logic area of the Main Programming Screen.

When you right click in the Main Logic area (in the square
above) the following menu will appear:

Through this menu, you can access the following functions:
Cancel Selection, Edit, Cut, Copy, Paste, Delete, Select All, Go
to Rung, Go To Label, Ladder Options, and Tag Database.

These functions are the function that are available in the Edit
Menu and in the Setup Menu of the Main Menu. Please see
Section 2.5.2 and 2.5.8 of this chapter.

80

2.6 Project View / Quick Access Bar
This side menu is a project view as well as a quick access bar to some
often used functionalities. This is used to navigate through your created
project logic including Main Logic, Interrupt Logic, and all Subroutine
Logics. Then for quick access of menu items you have your different
subsections, please see below for information on what you are
accessing.

Main Logic:
As the name suggests, is the main logic of your control program. You
can place some of the functions as Subroutine Logic, which is then
called from main logic. You can have only 1 Main Logic.

Interrupt Logic:
The interrupt logic is a special logic section, which is executed when an
external interrupt occurs. The purpose of interrupt logic is to provide a
fast response to sometime critical events. You will need to use the
Interrupt input module to trigger execution of Interrupt logic. You can
have only 1 Interrupt Logic.

Subroutine Logic:
You may want to use Subroutine to write some logic once and use at many places in your main
logic (by calling it), or just to organize your main logic in modules. You can have up to 64
subroutines. You use the Program Control Instructions to call subroutines. To add subroutine
right click on this selection or use menu option Subroutine. See Chapter 3 – RLL Instruction for
more information.

Hardware Setup:
 I/O Table Layout – Opens the I/O Configuration table. Please see Section 2.5.8 for more

information.
 I/O Graphical Layout – Opens the I/O Graphical Layout. Please see Section 2.8 for more

information.

Communication Setup:
 COM Configuration – Opens the COM Configuration. Please see Section 2.5.7 for more

information.
 Ethernet Setup – Opens the Ethernet Setup. Please see Section 2.5.8 for more information.

81

Database:
 Tag Database – Opens the Tag Database. You can see all the tags for this project. Please see

Section 2.5.8 for more information.
 Tag Cross Reference – Opens the Tag Cross Reference. This allows for locating all references

to a tag. Please see Section 2.5.8 for more information.
 Message Database – Opens the Message Database. You can see all messages for this

project. Please see Section 2.5.8 for more information.

PID Tuning:
 PID Setup – Opens the PID Setup. This dialogue is used for creating up to 8 PID loops. Please

see Chapter 6 for more information.
 PID Monitor – Opens the PID Monitor. This is used for fine tuning PID loops when online

with PLC. Please see Chapter 6 for more information.

CPU Control:
 Start PLC – Starts the PLC. PLC logic will start to execute.
 Stops PLC – Stops the PLC. PLC logic will not execute if stopped.
 Transfer to PLC – Transfers current open project to PLC. Please see Section 2.5.1 for more

information.
 Create USB Loader file – Creates USB Loader file that can be used to transfer project to

EZRack PLC. Please see Section 2.5.1 for more information.

Monitor:
 Go Online – EZRack PLC Designer Pro goes online with PLC. Please see Chapter 4 for more

information.
 Simulate – Simulates the current open project. Please see Chapter 4 for more information.
 Switch to Monitor Mode / Edit Mode – Switches current mode from Monitor Mode to Edit

Mode and vice versa. . Please see Chapter 4 for more information.

Debug:
 Start Debug – Starts Debug Mode. This available after EZRack PLC Online with PLC or when

Simulating Project. Please see Chapter 4 for more information.
 Run Debug – Run Debug Mode. This available after in Debug Mode. Please see Chapter 4 for

more information.
 Single Step – Single Step through PLC Project. This available after you have Run Debug.

Please see Chapter 4 for more information.
 Enable Outputs – Enable Outputs or Disable Outputs when in Debug Mode. Please see

Chapter 4 for more information.

82

2.7 Operator Bar
The operator bar contains all the different instructions elements that can be used in the ladder
logic. There are three ways to add instructions to ladder logic. First you can use the Instructions
Menu (Section 2.5.6). Second you can use the Toolbar (Section 2.3.#). And finally you can use the
operator sidebar right next to the Ladder Logic. The toolbar and sidebar can be hidden in the
Edit>Toolbars Menu (Section 2.5.2). Below you can see all the possible instructions, please see
Chapter 3 – RLL Logic for more information.

83

2.8 I/O Graphical View
The I/O Graphical view
allows for both viewing
the current status of the
outputs and configuring
the I/O the same way the
I/O Table can.

To configure please
double click on module or
click Auto Configure IO
Modules.

View Current Output Status
When in Monitor Mode (Online with PLC or Simulating project) the I/O Graphical View will show
you which outputs are ON and OFF. For Analog outputs it will indicate the value of the Analog
output.

84

Manual Configure
To manual configure the I/O in a specific slot
double click on full or empty slot.
For example if you double click on Slot M1 you
will get the following dialogue allowing you to
change the module in the slot.

OR

Auto Configure
To auto configure click on the auto configure
button. For Auto Configure please make sure
that the PC and PLC are connected (either
serially, over micro-usb, or over Ethernet).

After clicking the “Auto Configure IO Modules” button you
will get the following dialogue.

The EZRack PLC Designer Pro will read
back and let you know which modules
are currently plugged into your PLC. If
the PLC base is different size, EZRack
PLC Designer Pro will also ask you if
you would like to change your PLC
base. For each module the system will
then ask you to confirm the type
module and whether you would like to
change that position to this modules.

Please note: certain modules such as “Sinking” or “Sourcing” for Digital Outputs and “Voltage”
or “Current” for Analog modules cannot be differentiated so make sure the correct module is
being selected.

85

Chapter 3: Instructions for
Programming EZRack PLC
In this Chapter…

3.1 Ladder Logic Programming in EZRack PLC ... 86
3.2 Memory Map ... 87

3.2.1 System Discretes ... 88
3.2.2 System Registers ... 89

3.3 RLL Instructions in EZRack PLC ... 91

3.3.1 Available Data Types (Creating and Using) ... 96
3.3.2 Auto Generated Tags / Auto Fill Tag Address ... 99
3.3.3 Relay/Boolean Instructions ... 107
3.3.4 Compare Instructions.. 114
3.3.5 Math Instructions .. 121
3.3.6 Bit Logic Instructions ... 132
3.3.7 Move Instructions ... 137
3.3.8 Timer/Counter/Drum Instructions .. 144
3.3.9 Program Control Instructions ... 156
3.3.11 Communication Instructions ... 169
3.3.12 Data Logging Instructions ... 181
3.3.13 Datatype Conversion .. 188
3.3.14 Process Alarms/Faults ... 191
3.3.15 Analog ... 197
3.3.16 Function Blocks ... 204
3.3.17 IIoT .. 228

3
EZAutomation

86

3.1 Ladder Logic Programming in EZRack PLC
EZRack PLC Designer Pro is used for developing relay ladder logic (RLL) programs using a
Personal Computer (PC) running windows (Windows 7 or Windows 10). A PLC accepts inputs
from a variety of devices such as Switches, Sensors, etc.; processes inputs according to user
programmed control logic; and controls a variety of devices (e.g. relay, motors, valves etc.)
connected to the outputs of the PLC. The Relay Ladder Logic is the user programmed control
algorithm.

A ladder program is made up of a set of instructions to achieve the desired control processes.
Ladder Logic is built on the basis of electrical relay diagrams. A ladder diagram graphically
represents the elements of an electro-mechanical circuit. The user makes rungs of a ladder
comprised of series or parallel combinations of the input devices and memory locations, which
are usually followed by an output device or memory location. The Output element is usually the
last element on the rung. Based on the conditional state of the inputs, Output receives an action
signal. When the logical rung continuity is not achieved, the output is not executed.

An example of a rung is shown in the picture on the left.

If you are new to RLL programming, here is a simple sequence you should follow to develop RLL
(Relay Ladder Logic) programs:

• Define your machine automation or automated process
• Determine hardware requirements for the control action
• Define a control algorithm
• Assign inputs and output parameters of the process to the control algorithm
• Develop ladder program on a PC using EZRack PLC Designer Pro Software
• Match I/O addresses of the Controller to the correct input/output devices
• Simulate your program on PC using PLC Simulator
• Load the program into the PLC
• Validate / Debug the program
• Run program

87

3.2 Memory Map
Each instruction is associated with one or more memory locations in the PLC. When tested, the
logic instructions test, set, reset bits and/or modify values in associated bits and/or registers.
EZRack PLC supports several types of memory elements (please see the hardware manual for a
description of these). The tables below summarize various memory types and the ranges for
each.

Description Syntax Access Range Use

Discrete Inputs I Read Only 1-128 For physical Discrete inputs (Input Image table, see below)

Discrete Outputs O Read/Write 1-128 For physical outputs (Output Image table, see below)

Discrete Internals S Read/Write 1-1024 General Purpose bits

System Discretes SD See Table 1-16 System bits (some read-only)

Input Registers IR Read Only 1-64 For Input modules providing register type information (such
as counter module, analog input module)

Output Registers OR Read/Write 1-64 For output modules providing register type information
(such as counter module, analog output module)

Registers Internals R Read/Write 1-16384 General purpose internal registers

System Registers SR See Table 1-20 System Register (some read-only) some read-write

What is Image Table?
EZRack PLC first reads Inputs and stores them in its internal Image Table. Then it executes the logic where any
reference to Inputs/Outputs made is read from the Image Table only (except for Immediate instructions) and NOT
from the actual values of Inputs/Outputs on the EZLGX IO Modules. During execution, any Outputs changed are also
written to the Image Table. After completion of the RLL execution, EZRack PLC writes the Outputs from the Image
Table to EZLGX IO Modules and reads the Inputs again to the Image Table and the process continues.

88

3.2.1 System Discretes
The table below describes all of the System Discretes available in EZRack PLC Designer Pro.

System Discretes Name
System

Discretes
Description Read/Write

_SD_FIRST_SCAN SD1 First Scan Bit: Bit is On ONLY during the first scan of logic Read Only

_SD_TOGGLE_100MS SD2
Bit toggles every 100 mSec (the bit is ON for 100 mSec, and then off for
100 mSec)

Read Only

_SD_TOGGLE_1S SD3 Bit toggles every second (the bit is ON for 1 Sec, and then OFF for 1 sec) Read Only

_SD_RUN SD4
Run Bit: Bit is 1 while PLC is executing ladder logic; HMI status
indication

Read Only

_SD_OPEN_PORT SD5
Setting this bit will open the port at the specified baud rate. Next, it will
search for the Message Database for the defined message number in
SR20.

Read/Write

_SD_SET_BAUD SD6
If ON the baud rate of the serial port is set to 38400. If OFF the Baud
Rate to is set to 9600.

Read/Write

_SD_MESSAGE_ERROR SD7
This system discrete will be set if the Message Database is not defined
or the message number is NOT defined.

Read Only

_SD_SEND_BUSY SD8
This bit is set when a valid message is unable to be sent and will be
retired.

Read Only

_SD_ANALOG_FILTER SD9
If SD9 is ON, analog module input values will averaged so that value is
more consistent and does not fluctuate as much.

Read/Write

NA SD10-13 Reserved – DO NOT USE

_SD_LOW_BATTERY SD14 Indicates low battery Read Only

NA SD15-24 Reserved – DO NOT USE

_SD_USB_STATUS SD25
Indicates the current status of USB. Whether there is a USB in (1) or if
there is no USB (0).

Read Only

_SD_EIP_SCANNER_CON
NECTED

SD26
Indicates when the EtherNet/IP Adapter is connected with an
EtherNet/IP Scanner.

Read Only

_SD_EIP_SCANNER_TIME
OUT

SD27
Turns ON when the EtherNet/IP Adapter connection times out (after
3000 mSec). Note will be always OFF if EtherNet/IP Adapter never
connected.

Read Only

_SD_SPARKPLUG_CONFI
G_ERROR

SD29 This bit will turn on if the Sparkplug configuration has an error. Read Only

_SD_SPARKPLUG_PUBLIS
H_ERROR

SD30
This bit indicates if the EZRack PLC is not able to publish a message to
the broker.

Read Only

_SD_SPARKPLUG_RUNNI
NG_STATUS

SD31
This bit is ON if the Sparkplug MQTT is connected to the Broker and
publishing correctly.

Read Only

89

3.2.2 System Registers
The table below describes all of the System Registers available in EZRack PLC Designer Pro. The
numbers in these registers are in Binary format.

System Register Names
System

Registers
Description Read/Write

Data
Type

_SR_MAJOR_REV SR3 Firmware Major Revision Read Only U16

_SR_MINOR_REV SR4 Firmware Minor Revision Read Only U16

_SR_BUILD_REV SR5 Firmware Build Number Read Only U16

_SR_WATCHDOG_TIMER SR6 Watchdog Timer Register; Increments every 10 ms Read Only U16

_SR_SCAN_TIME SR7 Scan Time in ms Read Only U16

_SR_ERROR_MASK SR8 Status – used to indicate errors (See below for defined bits) Read Only U16

_SR_ERROR_NUM SR9 Error Message Number (see below for defined errors) Read Only U16

_SR_SECONDS SR10 Real Time Clock (RTC) Second Read/Write U16

_SR_MINUTES SR11 RTC Minute Read/Write U16

_SR_HOUR SR12 RTC Hour Read/Write U16

_SR_DAY SR13 RTC Day: 1=Sunday, 2=Monday, … 7=Saturday Read/Write U16

_SR_DATE SR14 RTC Date Read/Write U16

_SR_MONTH SR15 RTC Month Read/Write U16

_SR_YEAR SR16 RTC Year (only 2 digits) Read/Write U16

_SR_CLOCK_MODE SR17 Clock Mode: 0=24 Hour, 1=12 Hour Read/Write U16

_SR_AM/PM SR18 AM/PM (0=AM, 1=PM) Read/Write U16

_SR_UPDATE_PLC_TIME SR19
Update Clock:In Ladder Logic ONLY Set to 1 to update internal
clock with the value in these registers. If setting time from a
computer or HMI, DON’T write to this bit.

Read/Write U16

_SR_MESSAGE_NUMBER SR20
The message number to be displayed if valid. A message
number not defined in the message database is not a valid
message and therefore the default message will be displayed.

Read/Write U16

_SR_EIP_SCANNER_IP1 SR21
This will have the IP address of the EtherNet/IP Scanner which
is connected to the EZ Rack PLC.

Read Only U16

_SR_EIP_SCANNER_IP2 SR22
This will have the IP address of the EtherNet/IP Scanner which
is connected to the EZ Rack PLC.

Read Only U16

_SR_EIP_SCANNER_IP3 SR23
This will have the IP address of the EtherNet/IP Scanner which
is connected to the EZ Rack PLC.

Read Only U16

_SR_EIP_SCANNER_IP4 SR24
This will have the IP address of the EtherNet/IP Scanner which
is connected to the EZ Rack PLC.

Read Only U16

_SR_TIME_ZONE SR29
This register is used to set the timestamp of messages to
correspond to GMT (UTC).

Read/Write S16

_SR_SPARKPLUG_CURREN
T_BROKER_INDEX

SR30
If multiple Brokers are defined this register will indicate which
broker is connected (0-3) Read Only U16

_SR_SPARKPLUG_STORE_
FORWARD_FIFO_COUNT

SR31
When Store and Forward is enabled this will indicate how
many tag updates are stored Read Only U16

_SR_SPARKPLUG_TASK_C
OUNTER

SR32
Each time that Sparkplug communication is initiated this
counter will increment. Read Only U16

90

The PLC reports its errors in two system registers: SR8 and SR9. SR8 uses bits for indicating errors, while
SR9 uses values to indicate the same errors. When these errors occur, the PLC halts the execution of
ladder logic, but continues to communicate. So an HMI can be used to detect these errors. When PLC
halts execution of ladder logic, the outputs are disabled.

Status Reported in SR8

(PLC stops executing ladder logic if error detected)

Error Type Bit Set to 1

Invalid User Program Bit 0 (lsb)

No Label for Jump Bit 1

Invalid Move data range Bit 2

System Error Bit 3

Error Number Reported in SR9
(PLC stops executing ladder logic if error detected)

Error Number Description

0 No Error

1 Invalid User Program

2 No Label for Jump

3 Invalid Move data range

4 System Error

5 Either FOR without NEXT, or NEXT
without FOR

91

3.3 RLL Instructions in EZRack PLC
This section provides you with detailed information about using the RLL (Relay Ladder Logic)
instructions in EZRack PLC. These 15 groups (1-8 similar instructions per group) of different
instructions is adequate to develop some of the most powerful control programs and at the
same time it’s concise enough to provide the shortest learning curve.

Each of the following sections is dedicated to a type of instructions. It is organized in such a way
that you will find:

 Available Data Types and how to use them

 How to use the instructions
• Descriptions of every individual instruction, including a graphical example and

supported data types

The following table is provided as a quick reference to all RLL instructions available in EZRack
PLC Designer Pro, as well as a brief description of what each instruction is used for.

Instruction Description

Relay/Boolean Instructions

NO Contact When the corresponding memory bit is a 1 (on) it will allow power flow through this element.

NC Contact When the corresponding memory bit is a 0 (off) it will allow power flow through this element.

Positive Transition
If the corresponding bit has changed from 0 (off) to 1 (on) in the current scan, power flows through
this element.

Negative Transition
If the corresponding bit has changed from 1 (off) to 0 (on) in the current scan, power flows through
this element.

NO Coil As long as the power flows to the instruction, corresponding memory bit is remains 1(on).

NC Coil As long as the power flows to the instruction, corresponding bit to remains 0 (off).

Set Coil
When power flows to the instructions, corresponding bit is set to 1 (on) and remains 1 (on) even if the
rung condition goes to false (use RESET COIL instruction to turn the corresponding bit Off).

Reset Coil
When power flows to the instructions, corresponding bit is set to 0 (off) and remains 0(off) even if the
rung condition becomes false (use SET COIL instruction to turn the corresponding bit on).

NO Immediate
Input

EZRack PLC reads the addressed bit immediately from the input module (instead of memory). The
power flows through the instruction if the read bit is 1 (on). (Please note all the bits corresponding to
the input module are updated with the read value).

NC Immediate Input
EZRack PLC reads the addressed bit immediately from the input module (instead of memory). The
power flows through the instruction if the read bit is 0 (off). (Please note all the bits corresponding to
the input module are updated with the read value).

NO Immediate
Output

The bit status is immediately written to corresponding output module. The bit remains 1(on) as long as
the power flows to the instruction.

NC Immediate
Output

The bit status is immediately written to corresponding output module. The bit remains 0(on) as long as
the power flows to the instruction.

92

Instruction Description

Compare Instructions

Equal To Allows power flow through this element if the data value of Input 1 register is Equal to Input 2 register.

Not Equal To
Allows power flow through this element if the data value of Input 1 register is NOT Equal to Input 2
register.

Greater Than
Allows power flow through this element if the data value of Input 1 register is Greater Than Input 2
register.

Less Than
Allows power flow through this element if the data value of Input 1 register is Less Than Input 2
register.

Greater Than or
Equal To

Allows power flow through this element if the data value of Input 1 register is Greater Than or Equal to
Input 2 register.

Less Than or Equal
To

Allows power flow through this element if the data value of Input 1 register is Less Than or Equal to
Input 2 register.

Limit
Allows power flow through this element if the data value of Input register is within the data values of
“High Limit” and “Low Limit” registers.

Compare Values
Compares 2 Inputs and evaluates whether Input 1 (>, <, =) Input 2. Turns on 1 of 3 discretes based on
results.

Math Instructions

Add Adds two data values in Input 1 and Input 2 registers and stores the result in Result register.

Subtract
Subtracts Input 2 register data value from Input 1 register data value and stores the result in Result
register.

Multiply Multiplies two data values in Input 1 and Input 2 registers and stores the result in Result register.

Divide
Divides Input 1 register data value by Input 2 register data value and stores the result in Result
register.

Modulo
Divides Input 1 register data value by Input 2 register data value and stores only the remainder in
Result register.

Absolute Converts a negative data value from Input 1 register to a positive value and stores it in Result register.

X=Y Conversion
Copies the data value of Input register, converts it into Result registers data type, and stores the data
value in Result register.

Format Conversion
Converts the data value from Source register in Binary, BCD, or GRAY code to the data value of Result
register in Binary, BCD or GRAY Code.

Advanced Math
Performs an advanced operation on a Input register value and outputs the resulting value into a Result
register.

Bit Logic Instructions

AND
Performs a bitwise AND operation between the data values of two registers Input 1 and Input 2. The
result is stored in Result register.

OR
Performs a bitwise OR operation between the data values of two registers Input 1 and Input 2. The
result is stored in Result register.

XOR
Performs a bitwise XOR operation between the data values of two registers Input 1 and Input 2. The
result is stored in Result register.

NOT
Performs a bitwise NOT operation on the data value of Source register and stores the result in
Destination register.

Shift Left
Performs a logical Shift Left on the data value of Input 1 register by the data value of Input 2 register
and stores the result in Result register.

Shift Right
Performs a logical Shift Right on the data value of Input 1 register by the data value of Input 2 register
and stores the result in Result register.

Rotate Left
Performs a logical Rotate Left on the data value of Input 1 register by the data value of Input 2 register
and stores the result in Result register.

Rotate Right
Performs a logical Rotate Right on the data value of Input 1 register by the value of Input 2 register and
stores the result in Result register.

RLL Instructions Table (Continued)

93

Instruction Description

Move Instructions

Move Data Moves data value of Source register to Destination register.

Bit Move
Moves either words to bits or bits to words with user-specified length for the number of words to
move. Maximum of 16 words can be moved at a time.

Move Block
Moves a block of memory area. Source register defines the starting area of memory address/register
to Move from and Destination register defines the starting area of memory address/register to move
to. The number of elements to move is user defined.

Block Fill
Fills a block of memory area. Source register defines the data value to Fill with and Destination register
defines the starting area of memory address/register to Fill to. The number of elements to move is
user defined. The number of elements to Fill is user defined.

Move Table of
Constants

Loads a table of user defined constants to a consecutive memory/register locations with the starting
memory address/register location defined by Destination register.

Timer/Counter/Drum Instructions

Timer
This instruction starts timing when called and once it reaches the preset value as defined by the data
value of Timer Preset Value register, it will stop timing and will allow power flow through the element.

Counter
This instruction starts counting either Up or Down by the increments of one until the counter reaches
the data value of Counter Preset Value register. The Counter will then allow power flow through the
element.

Drum

Time and/or Event driven drum type sequencer with up to 16 steps and 16 discrete outputs per step.
The outputs are updated during each step. Counts have a specified time base (1MSec to 1 Sec) and
every step has its own counter along with an event to trigger the count. After the time expires for one
step, it transitions to the next step and completes up to 16 steps total. After the completion of all the
steps this element allows power flow through it.

Program Control Instructions

Jump
Skips the rung containing Jump instruction (after execution of the rung) to a rung with the label
specified in the JUMP instruction and continues executing the program thereafter.

For Loop
Executes the logic between the FOR Loop and NEXT instructions by the data value of “Loop Count”
register.

Next Statement Specifies the return/end point for the FOR Loop instruction.

Call Subroutine
Calls a Subroutine specified by the label in CALL Subroutine instruction and is terminated by the
RETURN instruction.

Return Terminates a subroutine and returns back to the main logic.

String Instructions

String Move
Moves the data value (string type) of Source register to Destination register by the number of
characters specified by the user.

String Compare
Allows power flow through this element if the data value (string type) of Source 1 register is Equal to
Source 2 register by the number of characters specified.

String Length
Computes the length of a null-terminated String register (string type) and stores the result in Save
Length in register.

String Pack Combines data from 2 or more Numeric and/or String Tags into 1 common Output String Tag.

String Unpack Extract data from Input String and place into one or more Numeric and/or String Output Tags.

RLL Instructions Table (Continued)

94

RLL Instructions Table (continued)

Instruction Description

Communication Instructions

Open Port Opens the serial port for communication using the parameters specified by the user.

Send to Serial Port
Send an ASCII string data from Source register to the serial port with control and character count from
user defined “Control Address” and “Character Count Address” registers respectively.

Receive From Serial
Port

Receives an ASCII string data from serial port to Source register with control and character count from
user defined “Control Address” and “Character Count Address” registers respectively.

Close Port Closes the serial port opened for communication (can be used for downloading projects again).

Send to Marquee

Sends ASCII instructions for marquee communication. The message to be displayed on a marquee is
selected by the data value of “Message Number” register which looks up the message number for a
corresponding message from the central message database. If message number is not found in the
message database, user selected action for unmatched messages is done.

Modbus Master
Sends Modbus Master Read/Write commands to a configured slave unit. Can be done over Modbus
RTU or Modbus TCP/IP. Can read or write from any Modbus address up to 100 registers per time.
EZRack PLC can be used as Modbus slave without needing this instruction. Just need to open port.

Data Logging Instructions

Log to Data File

Allows to log to USB up to 10 tags per instruction. Maximum of 4 instructions are supported. Can log at
set time interval, log based on event, or log based on event at set time interval. Needs tags for file
name (can be constant), file size (will be updated based on current conditions), and status (current log
status).

Datatype Conversion Instructions

X=Y Conversion
Copies the data value of Input register, converts it into Result registers data type, and stores the data
value in Result register.

Format Conversion
Converts the data value from Source register in Binary, BCD, or GRAY code to the data value of Result
register in Binary, BCD or GRAY Code.

Process Alarms / Faults Instructions

Alarm
Evaluates the current condition of Input Tag. Will set 4 output discrete tags based on value of Input
tag. Compares Input to a tag based (or constant) setpoints (2 setpoints above and 2 setpoints below
normal operating range).

User Defined Faults
Evaluates conditions based on multiple inputs and generates faults when conditions are true. For
example if Input 1 Register is equal to Input 2 Register, will set fault number as fault code (Bit 0 of fault
code = fault 1, etc.) and fault found tags.

Analog Instructions

Ramp Generator
Increments / decrements an Output Tag based on Ramp Rate and Ramp Time tags (can be constant).
Goes from minimum to maximum output, if exceed or equal extremes will set overflow tag.

Scale (Linear)
Scales the Input Tag to Output Tag linearly based on a 2 point reference (each point has input and
output value).

Scale (Non-Linear)
Scales the Input Tag to Output Tag non-linearly using up to 10 reference points. Scale is linear between
every 2 reference points.

95

RLL Instructions Table (continued)

Function Block Instructions

Alarm
Evaluates the current condition of Input Tag. Will set 4 output discrete tags based on value of Input
tag. Compares Input to a tag based (or constant) setpoints (2 setpoints above and 2 setpoints below
normal operating range).

Change of Value
Finds the change of value of 1 Input Tag between 2 points of time. The Output Tag is the change value
of the Input Tag between T1 and T2.

Compare Values
Compares 2 Inputs and evaluates whether Input 1 (>, <, =) Input 2. Turns on 1 of 3 discretes based on
results.

Find Min & Max
Value

Outputs two tags whose value is the maximum and minimum value the Input Tag has reached since
last reset.

Flasher
Turns a discrete ON/OFF at a settable rate of time. The rate time is based on the Flash Rate tag (can be
constant).

Limit
Allows power flow through this element if the data value of Input register is within the data values of
“High Limit” and “Low Limit” registers.

Ramp Generator
Increments / decrements an Output Tag based on Ramp Rate and Ramp Time tags (can be constant).
Goes from minimum to maximum output, if exceed or equal extremes will set overflow tag.

Scale (Linear)
Scales the Input Tag to Output Tag linearly based on a 2 point reference (each point has input and
output value).

Scale (Non-Linear)
Scales the Input Tag to Output Tag non-linearly using up to 10 reference points. Scale is linear between
every 2 reference points.

String Pack Combines data from 2 or more Numeric and/or String Tags into 1 common Output String Tag.

String Unpack Extract data from Input String and place into one or more Numeric and/or String Output Tags.

User Defined Faults
Evaluates conditions based on multiple inputs and generates faults when conditions are true. For
example if Input 1 Register is equal to Input 2 Register, will set fault number as fault code (Bit 0 of fault
code = fault 1, etc.) and fault found tags.

IIoT Instructions (Industrial Internet of Things)

IIoT (MQTT) Publish
Allows the EZRack PLC to publish up to 10 tags to the Broker. Need to use the Setup > MQTT Setup…
option before this instruction can be used. Please see Chapter 8 for more information.

96

3.3.1 Available Data Types (Creating and Using)
These are the available data types which can be used in instructions. This section will define the
difference between the different data types. Also this section will also show how to define data
types, set default data type, and how to work with auto generated data types.

DATA TYPE vs MEMORY TYPE
Data Type: The data type of a tag determines how the bits representing those values are stored
in the PLC's memory. For example for the number 72 here is how they are stored:

Memory Type: The memory type of a tag determines the size and location in the PLC where the
tag is stored. For example discrete S Internals have a size of 1 bit than register R Internals which
are 16 bits long. Therefore the memory location for them is different.

Memory Type Table

Memory Type Syntax Range Data Types Available

Discrete

Discrete Inputs I 1-128 DISCRETE

Discrete Outputs O 1-128 DISCRETE

Discrete Internals S 1-1024 DISCRETE

System Discretes SD 1-16 DISCRETE

Bit Access Registers* R 1-16384 / 0-15 DISCRETE

Registers

Register Inputs IR 1-64 SIGNED_INT_16, SIGNED_INT_32, UNSIGNED_INT_16,
UNSIGNED_INT_32, BCD_INT_16, FLOATING_PT_32,
ASCII_STRING

Register Outputs OR 1-64 SIGNED_INT_16, SIGNED_INT_32, UNSIGNED_INT_16,
UNSIGNED_INT_32, BCD_INT_16, FLOATING_PT_32,
ASCII_STRING

Register Internals R 1-16384 SIGNED_INT_16, SIGNED_INT_32, UNSIGNED_INT_16,
UNSIGNED_INT_32, BCD_INT_16, FLOATING_PT_32,
ASCII_STRING

System Registers SR 1-20 SIGNED_INT_16, SIGNED_INT_32, UNSIGNED_INT_16,
UNSIGNED_INT_32, BCD_INT_16, FLOATING_PT_32,
ASCII_STRING

Index Registers XR 1-4 UNSIGNED_INT_16

Value Registers #R 1-4 UNSIGNED_INT_16
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for
example for R1 you can access bit 1 using R1/0. For all 16,384 registers you can individually access all 16 bits of them.

Data Type Value Representation in Bits

UNSIGNED_INT_16 72 0000 0000 0100 1000

ASCII_STRING 72 0011 0111 0011 0010

97

Data Type Table

Data Type Min Value Max Value
Number of

Registers used2
Memory Types

where used

DISCRETE OFF (0) ON (1) 1 I, O, S, SD, R1

SIGNED_INT_16 -32,768 32,767 1 IR, OR, R, SR,

SIGNED_INT_32 -2,147,483,648 2,147,483,647 2 IR, OR, R, SR,

UNSIGNED_INT_16 0 65,535 1 IR, OR, R, SR,

UNSIGNED_INT_32 0 4,292,967,295 2 IR, OR, R, SR,

BCD_INT_16 0 9,999 1 IR, OR, R, SR,

FLOATING_PT_32 -10,000,000,000.0000 10,000,000,000.0000 2 IR, OR, R, SR,

ASCII_STRING 2 Char 126 Char Variable (1-63) IR, OR, R, SR,
1 Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for
example for R1 you can access bit 1 using Tag_Name.Bit_0. For more information see section 3.3.2.
2 If 2 or more registers are used than for example if R1 is the Tag Address then R2 will also be used. If you use R2 in another
register, results will be unpredictable.

DISCRETE
The discrete data type is the single bit data type. It is used to indicate an ON (1) or OFF (0) state
controlling the operations of logic. It is used in instructions like Normally Open Contact, Normal
Open Coils, and etc. Please see tables for more information.

Note: For bit access discretes you will use the format of Tag_Name.Bit_Number. For example
with tag Start (R1) to access bit 0 you will type Start.0 (R1/0). You can also add bits within a
word in the tag database using the Add Bit-In-Register Tag button.

UNSIGNED_INT_16
The basic single word register data type. The most used register type when negative numbers
are not needed. Almost all instructions can use this data type. Please see tables for more
information.

UNSIGNED_INT_32
The basic double word register data type. Used when you need to store larger values and
negative numbers are not needed. Almost all instructions can use this data type. Please see
tables for more information.
Note: This data type uses two register address for example if R1 is the Tag Address then R2 will
also be used. If you use R2 in another register, results will be unpredictable.

SIGNED_INT_16
The basic signed single word register data type. The most used register type when need to have
negative number. Almost all instructions can use this data type. Please see tables for more
information.

98

SIGNED_INT_32
The basic signed double word register data type. Used when you need to store larger values and
need negative numbers. Almost all instructions can use this data type. Please see tables for
more information.
Note: This data type uses two register address for example if R1 is the Tag Address then R2 will
also be used. If you use R2 in another register, results will be unpredictable.

BCD_INT_16
This is the binary coded decimal single word data type. Can only be used in specific instructions
but is great for displaying decimal values and for ease of conversion. Please see tables for more
information.

FLOATING_PT_32
This is double word data type used for working with really large or really small numbers. Using
single-precision you can work with exponentially large numbers or decimal numbers. When
displaying can be in either decimal notation or scientific notation. Almost all instructions can use
this data type. Please see tables for more information.
Note: This data type uses two register address for example if R1 is the Tag Address then R2 will
also be used. If you use R2 in another register, results will be unpredictable.

ASCII_STRING
This is the data type that is used with string instructions. This data type stores character
information as ASCII data. Each register address will store 2 characters and the maximum
character length is 126. Therefore please note this data type can use from 1 to 63 registers.
Note: This data type uses two or more register addresses for example if R1 is the Tag Address
then R2, R3, R4, etc. can also be used. If you use R2 in another register, results will be
unpredictable.

99

3.3.2 Auto Generated Tags / Auto Fill Tag Address
The EZRack PLC Designer Pro will automatically fill in the next available address when a new tag
is created. For I/O tags please configure the PLC with the modules you will be using. This will
create the needed I/O tags for those modules. Please see below for other Auto Populate tags.

To create a new tag please follow the process below:

Ladder Logic Creation

1. Add a new instruction to the ladder logic. For example an Add Instruction.

2. Double click on the instruction and enter a tag name for your Input 1. Example Value 1

100

3. Hit enter or right click in the Tag Name area. The Add New Tag Details box will pop up.
The box will be prepopulated with the next available Memory Address. The starting
point from which these addresses are taken can be changed in the Address Suggestion
section. The only change needed is to select the data type. The memory address can be
changed but it should only be done if needed for instructions like Block Move also you
might need to this for the Modbus slave Memory map (for more info see Section 7.2.4
EZRack as Modbus Slave).

a. If creating a Discrete the Tag Details box will not appear since the data type
need not be modified.

b. To use Input and Outputs please set select the used I/O modules in the I/O
Table. For more information please see section 2.5.8 about IO Configuration.

4. You can now add an Initial Value if you would like. Next just click OK and the tag will be

created.

101

Address Suggestion Preference
The EZRack PLC will suggest addresses based on the select starting point here. Initially it will start
from Address 1 and suggest the next available address. The user can at any point tell the software
to start suggesting from a different starting point. For example if starting address is set to 200
then if 200 is available that will be the next suggested address, if it is not then it will go to 201 and
so and so forth.

Tag Database Creation

1. In the tag database click on the Add Tag option. The Add New Tag Details box will
appear.

2. Enter the wanted Tag Name and then select the Tag Datatype.

102

3. Based on the tag Datatype you will either use the S Memory Type or the R Memory
Type. The box will be prepopulated with the next available Memory Address. The
starting point from which these addresses are taken can be changed in the Address
Suggestion Preference. The memory address can be changed but it should only be done
if needed for instructions like Block Move also you might need to this for the Modbus
slave Memory map (for more info see Section 7.2.4 EZRack as Modbus Slave).

4. You can now add an Initial Value if you would like. Next just click OK and the tag will be
created.

Note: The automatically filled in tag address can be modified at any point by the user. This
means that while the auto fill will check and make sure that the used range does not overlap
with any other tag, the user can make changes which mean that tags can overlap again. Please
see example below.

Example of user error:
1. Project currently uses R2 and R3 for something.
2. User creates a tag which is SIGNED_INT_32, the auto fill will put this tag at register address R4.

3. The user can change the address to R1 but at that point this tag will use R1 and R2 -> this will cause overlap with
the already created tag at R2.

103

Bits within a Word (Bit Access)
To access the bits with a word you will use the format of Tag_Name.Bit_Number. For example
with tag Start (R1) to access bit 0 you will type Start.0 (R1/0). You can also add bits within a
word in the tag database using the Add Bit-In-Register Tag button.

Note: The Register tag needs to exist before you can add bit access to that tag.

104

Auto Populated Tags
There also exist some tags which will automatically be populated:

I/O Modules tags
Any IO module added to the project will populate the tag database with corresponding IO tags.
Please see section 2.5.8 for more information.

System Tags
All systems tags are now automatically included in the project. For more information on system
tags please see section 3.2.

PID tags
PID tags will be automatically created after a new PID Loop is created. You will have the choice
of changing the memory location of those tags if need be. For more information on PID tags
please see Chapter 6.

Instruction Auto Generated Tags
Certain instructions will auto generate
some tags. These tags will have the same
name as the base tag used, with a “.” and
some more information afterwards.
These tags cannot be deleted unless the
base tag is deleted. The base tag used to
generate these tags can be either the
input or the output of the instruction.
The instructions will inform you about
the tags that were generated and their
Tag addresses.

Note: Please be careful that the tag
address used by these Auto Generated
tags are not used elsewhere
unintentionally. This may cause
unpredictable behavior.

For example the Timer Instruction will create tags: TIMER.ACC, TIMER.RST, TIMER.EN,
TIMER.DN, and TIMER.PRE with the base tag of TIMER. Base tag address is R10 and the rest of
auto generated tags use R11 and R12.

105

These tags will appear in the tag database but they cannot be edited or deleted unless the base
tag and its associated object

Table of Tag Formats
This table describes all the different possible tag formats that exist. While it may look
complicated most of these are auto created for you so the user only needs to create the basic
tags. Note: All tags can have their name modified except for system and reserved tags.

Tag Name Structure Possible Data

Types
Description How Created Example

TAG_NAME Discrete or
Register

This is the basic tag the suer
can create and modify the
address of.

User Created. LIGHT, VALUE1

TAG_NAME.# Discrete (Bit
within word)

Bit access to the register.
Works with Registers only.

User Created. VALUE1.0

TAG_NAME.RES# Register Reserved tags for internal
calculations.

Auto Created for certain
function blocks.

VALUE1.RES1

M#.INPUT_# Discrete Module # Inputs. User can
changed name.

Created during I/O
Config.

M1.INPUT_1

M#.OUTPUT_# Discrete Module # Outputs. User can
changed name.

Created during I/O
Config.

M3.OUTPUT_7

M#.INPUT_REG_# Discrete Module # Input Registers.
User can changed name.

Created during I/O
Config.

M7.INPUT_REG_
3

M#.OUTPUT_REG_# Discrete Module # Output Registers.
User can changed name.

Created during I/O
Config.

M5.OUTPUT_RE
G_5

106

M#.TAG_NAME Discrete or
Register

Specialty module # tags.
User can changed name.

Created during I/O
Config.

M4.CNTR1_COU
NTS

_SD_TAG_NAME Discrete System discrete. Always in project. _SD_FIRST_SCA
N

_SR_TAG_NAME Register System register. Always in project. _SR_MINUTES

I/O Address Format for EZRack PLC

107

3.3.3 Relay/Boolean Instructions
Use discrete instructions to monitor and control the status of bits in the PLC. The bits that can
be monitored / controlled by using relay instructions are inputs, outputs, internal bits and
system bits.

Adding Relay/Boolean Instructions
To configure all of the various Relay/Boolean instructions, perform the following steps:

1. Click on any Boolean instruction icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click to place the instruction.
3. To enter the Tag name/address, double click the instruction to open its Dialog box.
4. Select a proper Tag name/address from the drop down list called Tag Name.

a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag

Details dialogue will appear.
c. Enter the Tag Address in this screen.

108

Normally Open Contact:
The Normally Open Contact instruction reads/examines an

input or storage bit at memory location Aaaaa. If the corresponding memory bit is
ON (1), power will flow through this element.

Normally Closed Contact:
The Normally Closed Contact instruction reads/examines an

input or storage bit at memory location Aaaaa. If the corresponding memory bit is
OFF (0), power will flow through this element.

*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for
example for R1 you can access bit 1 using R1/0. See section 3.3.1 for more information.

Allowed Data Formats: Discrete and Bit Access to Registers

In the example above, when input I1 is ON, output O1 will energize.

In the example above, when input I2 is OFF, output O1 will energize.

Memory Type Syntax (A) Range (aaaa)

Discrete

Discrete Inputs I 1-128

Discrete Outputs O 1-128

Discrete Internals S 1-1024

System Discretes SD 1-16

Register Discretes

Bit Access Registers* R 1-16384 / 0-15

Aaaaa

TAG

Aaaaa

TAG

109

Positive Contact:
The Positive Contact instruction reads/examines an input or

storage bit at memory location Aaaaa. If the addressed bit has transitioned from
the OFF (0) to the ON (1) state in the current scan, power will flow through this
element for the rest of that scan.

Negative Contact:
The Negative Contact instruction reads/examines an input or

storage bit at memory location Aaaaa. If the addressed bit has transitioned from the
ON (1) to the OFF (0) state in the current scan, power will flow through this element
for the rest of that scan.

*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for
example for R1 you can access bit 1 using R1/0. See section 3.3.1 for more information.

Allowed Data Formats: Discrete and Bit Access to Registers (Only the first 64
registers)

In the example above, every time I3 makes an off-to-on transition in current scan, O3 will
energize for a single scan.

In the example above, every time I4 makes an on-to-off transition in current scan, O3 will
energize for a single scan.

Note: The Positive and Negative Contact instructions test whether a bit has changed from 0 to 1 or 1 to 0 during the current scan of
ladder logic respectively. Therefore, to use these instructions, the logic to change the state of the bit MUST be placed before the logic
containing this instruction. If the logic for change of state is placed after the instruction, the instruction will never see the transition,
and therefore will never be true.

Memory Type Syntax (A) Range (aaaa)

Discrete

Discrete Inputs I 1-128

Discrete Outputs O 1-128

Discrete Internals S 1-1024

System Discretes SD 1-16

Register Discretes

Bit Access Registers* R 1-64 / 0-15

Aaaaa

TAG

Aaaaa

TAG

110

Normally Open Coil:
As long as power flows to this element, the bit Aaaaa associated

with the Normally Open Coil instruction remains ON (1).

Normally Closed Coil:
As long as power flows to this element, the bit Aaaaa associated

with the Normally Closed Coil instruction remains OFF (0).

*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for
example for R1 you can access bit 1 using R1/0. See section 3.3.1 for more information.

Allowed Data Formats: Discrete and Bit Access to Registers

In the example above, O3 energizes when I3 transitions from 0 to 1.

In the example above, O6 will be de-energized as long as I2 is ON.

Memory Type Syntax (A) Range (aaaa)

Discrete

Discrete Outputs O 1-128

Discrete Internals S 1-1024

Register Discretes

Bit Access Registers* R 1-16384 / 0-15

Aaaaa

TAG

Aaaaa

TAG

111

Set Coil:
When power flows to this element, the Set Coil instruction

sets/turns ON (1) the specified output or storage bit at memory location Aaaaa.
Once the specified output or storage memory bit is turned ON (1), it will remain ON (1) even if
the rung conditions change later to stop power flow to the element. The only way to change the
status of the specified storage or memory bit set by ‘Set Coil’ is to use the ‘Reset Coil’
instruction.

Reset Coil:
When power flows to this element, the Reset Coil instruction

resets/turns OFF (0) the specified output or storage bit at memory location Aaaaa.
Once the specified output or storage memory bit is turned OFF (0), it will remain OFF (0) even if
the rung conditions change later to stop power flow to the element. The only way to change the
status of the specified storage or memory bit reset by ‘Reset Coil’ is to use the ‘Set Coil’
instruction to set/turn ON (1).

*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for
example for R1 you can access bit 1 using R1/0. See section 3.3.1 for more information.

Allowed Data Formats: Discrete and Bit Access to Registers

In the example above, bit 07 is Set when I1 is ON. Bit 07 will remain Set even after I1 becomes
FALSE.

In the example above, if I2 is ON, S1 will be Reset (turned OFF).

Memory Type Syntax (A) Range (aaaa)

Discrete

Discrete Outputs O 1-128

Discrete Internals S 1-1024

Register Discretes

Bit Access Registers* R 1-16384 / 0-15

Aaaaa

TAG

Aaaaa

TAG

112

Normally Open Immediate Input:
The Normally Open Immediate Input instruction

reads/examines the status of the specified Input point at location Aaaaa directly
from the EZLGX IO module at the time of execution and NOT from the memory bit present in the
Image Table. If the corresponding input state is ON (1), power will flow through this element. All
the available inputs on corresponding module are read only. The Image Table is also updated
with the read input memory locations.

Normally Closed Immediate Input:
The Normally Closed Immediate Input instruction

reads/examines the status of the specified Input point at location Aaaaa directly from
the EZLGX IO module at the time of execution and NOT from the input memory bit present in
the I/O scan image. If the corresponding input state is OFF (0), power will flow through this
element. When Aaaaa corresponds to an EZLGX IO input module, all the available inputs on the
corresponding module are read only. The Image Table is also updated with the read input
memory locations.

Allowed Data Formats: Discrete Only

In the example above, when instruction --|i|-- is executed, the input module addressed I8 is
read, and then the rung is solved. All inputs (I1- I8) on that module are read and the memory is
updated.

In the example above, when instruction ---|i|--- is executed, the input module addressed I8 is
read, and then the rung is solved. All inputs (I1- I8) on that module are read and the memory is
updated.

A Normal PLC scan consists of reading inputs (and saving the input status in memory or input image table), solving ladder logic, and writing outputs
(from memory or output image table). During a logic scan, if a reference to an input comes up, the value stored in memory is used for that input.
Similarly, if logic needs to energize an output, a corresponding memory bit is set, which is later written to the physical output during the I/O scan phase.

The immediate input instructions allow you to read a corresponding input bit at the time of instruction execution, and use the most current bit status
(instead of the status stored in memory during input read) in logic solving. Immediate input instructions update all the bits corresponding to an input
module, even if only one of the bits is used in an Immediate input instruction. For example, if I1 is used for immediate input, which is on an 8 input card,
bits I1 - I8 would be updated immediately.

Memory Type Syntax (A) Range (aaaa)

Discrete

Discrete Inputs I 1-128

Aaaaa

TAG

Aaaaa

TAG

113

Normally Open Immediate Output:
When power flows to this element, the Normally Open

Immediate Output instruction sets/turns ON (1) the specified output point at
memory location Aaaaa directly on the EZLGX IO module and the output memory bit in the
Image Table at the time of execution.

Normally Closed Immediate Output:
When power flows to this element, the Normally Open

Immediate Output instruction resets/turns OFF (0) the specified output point at
memory location Aaaaa directly on the EZLGX IO module and the output memory bit in the
Image Table at the time of execution.

Allowed Data Formats: Discrete Only

In the example above, if the power flows to the output instruction, O8 will be energized and
immediately written to the physical output corresponding to O8.

In the example above, if the power flows to the output instruction, O8 will be de-energized and
immediately written to the physical output corresponding to O8.

A Normal PLC scan consists of reading inputs (and saving the input status in memory or input image table), solving ladder logic, and
writing outputs (from memory or output image table). During logic scan, if a reference to an input comes up, the value stored in
memory is used for that input. Similarly, if logic needs to energize an output, a corresponding memory bit is set, which is later written
to physical output during the I/O scan phase.

The immediate Output instructions allow you to write to the corresponding physical output at the time of instruction execution,
instead of waiting for the I/O scan to write the output. Only the output referred to by the instruction is updated.

Memory Type Syntax (A) Range (aaaa)

Discrete

Discrete Outputs O 1-128

Aaaaa

TAG

Aaaaa

TAG

114

3.3.4 Compare Instructions
Compare instructions allow you to compare values using a specific comparison instruction.
When using compare instructions you must compare values of the same data and display type.
The parameters you enter are program constants or logical addresses of the values you want to
compare.

Compare instructions perform comparisons of two addresses Input 1 and Input 2 defined by the
data box selected. When the processor finds the expression is true, the power flows through
these instructions.

Adding Compare Instructions
To add Compare Instructions, perform the following steps:

1. Click on any Compare instruction icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.
3. To enter Data/Display types, double click the instruction to open its Dialog box.

4. Select a proper Tag name/address from the
drop down list for Input 1. Or add a new tag.
5. Select a proper Tag name/address from the
drop down list for Input 2. Or add a new tag.
6. Choose the correct data format from the last
drop down list on the dialog box.
7. Data types for both Input 1 and 2 must be the
same.

Adding tags:
a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag

Details dialogue will appear.
c. Enter the Tag Address in this screen.

Note:
1) Data of five different types SIGNED_INT_16, SIGNED_INT_32, UNSIGNED_INT_16,
UNSIGNED_INT_32 or FLOAT 32 is allowed.
2) Word Data Types default to decimal display type.
3) UNSIGNED Data Types also allow Hex and Octal displays.
4) Display Type allows you to select how the number will be displayed in the program. There are
three display options

115

Equal To:
The Equal To instruction can be used to

compare two Inputs, Input 1 at memory location Aaaaa and Input
2 at memory location Bbbbb. If Input 1 = Input 2 then power will
flow through this element. Either Inputs can be assigned a
constant value. Values can be displayed in Decimal, Hex, or Octal
format. Both Input 1 and Input 2 must be of the same data type.

Not Equal To:
The Not Equal To instruction can be used to

compare two Inputs, Input 1 at memory location Aaaaa and Input
2 at memory location Bbbbb. If Input 1 ≠ Input 2 then power will
flow through this element. Either Input can be assigned a
constant value. Values can be displayed in Decimal, Hex, or Octal
format. Both Input 1 and Input 2 must be of the same data type.

Allowed Data Formats: all register data type except BCD and ASCII.

In the example above, if R1 equals R2, power will flow out of EQ and O1 will be energized.

In the example above, if R1 does not equal R2, power will flow out of NEQ and O1 will be
energized.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Aaaaa
TAG 1

Bbbbb
TAG 2

116

Greater Than:
The Greater Than instruction can be used to

compare two Inputs, Input 1 at memory location Aaaaa and
Input 2 at memory location Bbbbb. If Input 1 > Input 2 then
power will flow through this element. Either Input can be
assigned a constant value. Values can be displayed in Decimal,
Hex, or Octal format. Both Input 1 and Input 2 must be of the
same data type.

Less Than:
The Less Than instruction can be used to

compare two Inputs, Input 1 at memory location Aaaaa and Input
2 at memory location Bbbbb. If Input 1 < Input 2 then power will
flow through this element. Either Input can be assigned a
constant value. Values can be displayed in Decimal, Hex, or Octal
format. Both Input 1 and Input 2 must be of the same data type.

Allowed Data Formats: all register data type except BCD and ASCII.

In the example above, if R1 is Greater Than R2, power will flow out and O1 will be energized.

In the example above, if R1 is Less Than R2, power will flow and O1 will be energized.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Aaaaa
TAG 1

Bbbbb
TAG 2

117

 Greater Than Or Equal To:
The Greater Than Or Equal To instruction

can be used to compare two Inputs, Input 1 at memory
location Aaaaa and Input 2 at memory location Bbbbb. If Input
1 is Greater Than Or Equal To Input 2 then power will flow
through this element. Either Input can be assigned a constant
value. Values can be displayed in Decimal, Hex, or Octal
format. Both Input 1 and Input 2 must be of the same data type.

 Less Than Or Equal To:
The Less Than Or Equal To instruction

can be used to compare two Inputs, Input 1 at memory
location Aaaaa and Input 2 at memory location Bbbbb. If Input
1 is Less Than Or Equal To Input 2 then power will flow
through this element. Either Input can be assigned a constant
value. Values can be displayed in Decimal, Hex, or Octal
format. Both Input 1 and Input 2 must be of the same data type.

Allowed Data Formats: all register data type except BCD and ASCII.

In the example above, if R1 is Greater Than or Equal To R2, power will flow out and O1 will be
energized.

In the example above, if R1 is Less or Equal To R2, power will flow out and O1 will be energized.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Aaaaa
TAG 1

Bbbbb
TAG 2

118

Limit:
The Limit instruction can be used to

compare register data values of the Input at memory location
Aaaaa with Low at memory location Bbbbb and High at
memory location Ccccc. If Aaaa ≤ Ccccc and Aaaaa ≥ Bbbbb
then power will flow through this element. Any of the
registers (Input, High or Low) can be assigned a constant value. Values can be displayed in
Decimal, Hex, or Octal format. All the registers must be of the same data type.

Note: This is the same instruction that can also be found in the Function Instruction section. It is
also located here for convenience sake.

Allowed Data Formats: all register data type except BCD and ASCII.

In the example above, if the input R1 is within R2 and R3, power will flow out and O9 will be
energized.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

119

Compare Values:
The Compare Values instruction can be

used to compare two Inputs, Input 1 at memory location Aaaaa
and Input 2 at memory location Bbbbb. Based on the Input 1
and Input 2 comparison the corresponding discrete tag (Ccccc,
Ddddd, or Eeeee) will turn on. This instruction examines
whether Input 1 and Input 2 are greater than, equal, or less than. Either Input can be assigned a
constant value. Values can be displayed in Decimal, Hex, or Octal format. All the registers must
be of the same data type. Power constantly flow through this element.

Note: This is the same instruction that can also be found in the Function Instruction section. It is
also located here for convenience sake.

Allowed Data Formats: Discrete, all register data type except BCD and ASCII.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Memory Type Syntax (C,D, E) Range (cccc) Range(dddd) Range(eeee)

Discrete

Discrete Outputs O 1-128 1-128 1-128

Discrete Internals S 1-1024 1-1024 1-1024

Register Discretes

Bit Access Registers* R 1-16384 / 0-15 1-16384 / 0-15 1-16384 / 0-15
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for example for R1 you can
access bit 1 using R1/0. See section 3.3.1 for more information.

Aaaaa
TAG 1

Bbbbb
TAG 2

TAG 1 (Aaaaa)

TAG 2 (Bbbbb)

TAG 3 (Ccccc)

TAG 4 (Ddddd)

TAG 5 (Eeeee)

120

In this example:

 If R1 > R2 then S1 will be ON and O12 will be energized.

 If R1 = R2 then S2 will be ON and O11 will be energized.

 If R1 < R2 then S3 will be ON and O10 will be energized.

121

3.3.5 Math Instructions
The instructions listed within this chapter perform arithmetical operations on user specified
values or addresses. All Math Instructions are always TRUE (that is, power flows through them).

Adding Math Instructions
To configure all of the various Math instructions, perform the following steps:

1. Click on any Math instruction icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.
3. To enter Data/Display types, double click the instruction to open its Dialog box.

4. Select a Tag name/address from the
drop down list for Input 1. Or add a new tag.

5. Select a Tag name/address from the
drop down list for Input 2. Or add a new tag.

6. Select a Tag name/address from the
drop down list for Result. Or add a new tag.

7. For Absolute, X=Y Conversion, and
Binary Conversion instructions, select
Source and Destination Tag
names/addresses.

8. Choose the correct data format from the last drop down list on dialog box.
9. Data types for all Input 1, Input 2 and Result must be the same (Source and Destination

for Absolute and Conversion instructions).

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag

Details dialogue will appear.
c. Enter the Tag Address in this screen.

122

Add:
When power flows to this element, the Add

instruction adds the register data values of two Inputs,
Input 1 at memory location Aaaaa and Input 2 at memory
location Bbbbb. The added value is stored in Result at
memory location Ccccc. Input 2 can be assigned a constant
value. Values can be displayed in Decimal, Hex, or Octal format. Both the Inputs and Result must
be of the same data type.

Subtract:
When power flows to this element, the

Subtract instruction subtracts the register data value of
Input 2 at memory location Bbbbb from Input 1 at memory
location Aaaaa. The subtracted value is stored in Result at
memory location Ccccc. Input 1 and Input 2 can be
assigned a constant value. Values can be displayed in Decimal, Hex, or Octal format. Both the
Inputs and Result must be of the same data type.

Allowed Data Formats: all register data type except BCD and ASCII.

In the example above, R1 will be added to R2 and the result will be placed in R3.

In the example above, R2 will be subtracted from R1 and the result will be placed in R3.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

123

Multiply:
When power flows to this element,

the Multiply instruction multiplies the register data
values of two Inputs, Input 1 at memory location Aaaaa
and Input 2 at memory location Bbbbb. The multiplied
value is stored in Result at memory location Ccccc. Input
2 can be assigned a constant value. Values can be displayed in Decimal, Hex, or Octal format.
Both the Inputs and Result must be of the same data type.

Divide:
When power flows to this element,

the Divide instruction divides the register data value of
Input 1 at memory location Aaaaa by Input 2 at memory
location Bbbbb. The divided value is stored in Result at
memory location Ccccc. Input 1 and Input 2 can be
assigned a constant value. Values can be displayed in
Decimal, Hex, or Octal format. Both the Inputs and Result must be of the same data type. Power
will stop flowing through this element if division by zero is attempted.

Allowed Data Formats: all register data type except BCD and ASCII.

In the example above, R1 will be multiplied by R2 and the product will be placed in R3.

In the example above, R1 will be divided by R2 and the result will be placed in R3.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

124

Modulo:
When power flows to this element, the

Modulo instruction divides the register data value of Input
1 at memory location Aaaaa by Input 2 at memory location
Bbbbb. The Remainder Value is stored in Result at memory
location Ccccc. Input 1 and Input 2 can be assigned a
constant value. Values can be displayed in Decimal, Hex, or Octal format. Both the Inputs and
Remainder must be of the same data type. Power will stop flowing through this element if
division by zero is attempted.

Allowed Data Formats: SIGNED and UNSIGNED data types only.

In the example above, R1 is divided by R2 and only the remainder is placed in R3.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

125

Absolute:
When power flows to this element, the

Absolute instruction converts the signed (negative) register data
value of Src at memory location Aaaaa to the absolute (positive
only) data value and stores it in Dest at memory location Bbbbb.
Both Source and Destination must be of the same data type.

Allowed Data Formats: SIGNED and FLOATING_PT data types only.

In the example above, R11 will contain the Absolute value of R10 (for example, if R10 was -10,
R11 will contain +10).

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

126

X=Y Conversion:
When power flows to this element, the

X=Y Conversion instruction converts the register data type of Src
at memory location Aaaaa to Res at memory location Bbbbb and
copies the converted data value to Res at memory location Bbbbb.
If Src has a Floating Point data type it can either be rounded off to
the nearest integer value or truncated when converting to other data types. When the integer
or floating point data value is converted to an ASCII type data value, the number of digits,
decimal position and justification (leading zeros, leading spaces, or trailing spaces) can be
assigned as per user.

Note: This is the same instruction that can also be found in the Datatype Conversion Instruction
section. It is also located here for convenience sake.

Allowed Data Formats: all register data types.

Note: If converting a signed 16 bit (with a negative value -1) to an unsigned 16 bit register the
result will always be zero.

In the example above, variable A, (R500) which is an UNSIGNED_32 (U32) Type, will be
converted to an UNSIGNED_16 Type (U16) and saved in B.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

127

Format Conversion:
When power flows to this element, the

Format Conversion instruction converts the data format of From at
memory location Aaaaa to To at memory location Bbbbb as
follows:

• Binary to BCD
• BCD to Binary
• Binary to Gray Code
• Gray Code to Binary

Both the From and To data types must be a 16 bit Signed Integer, 16 bit Unsigned Integer, or 16
bit BCD for Format Conversion instruction.

Note: This is the same instruction that can also be found in the Datatype Conversion Instruction
section. It is also located here for convenience sake.

Allowed Data Formats: SIGNED_INT_16, UNSIGNED_INT_16, BCD_INT_16

In the example above, R1 which is in Binary format, is converted to Gray Code and saved in R2.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

128

Advanced Math:
When power flows to this element,

the Advanced Math instruction performs a selected
operation on the register data values of Input at memory
location Aaaaa. The resulting value is stored in Result at
memory location Bbbbb. Input can be assigned a constant
value. Values can be displayed in Decimal, Hex, or Octal format. The Input can be any data type
but the Result must be of type Floating Point. Please see more information below and on next
page.

Allowed Data Formats: Input can be all register data types except BCD and ASCII. Result
must be FLOATING_PT_32.

Advance Math function allows you to perform following mathematical operations in

ladder logic:

 Square Root

 Log (base 10)

 Exponent (e^Input)

 Natural Log (ln, base e)

 Sin

 Cosine

 Tan

 Inverse Sin

 Inverse Cosine

 Inverse Tan

 Convert to Radians

 Convert to Degrees

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

129

Adding Advanced Math Instruction

1. Click on the Advanced Math instruction icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.
3. To enter Data/Display types, double click the instruction to open its Dialog box.
4. Select the Operation you would like to perform from the dropdown menu. For more

information on operations see descriptions below.
5. Select a proper Tag name/address from the drop down list for Input. Or add a new tag.

You can also instead put in a constant.
6. Select a proper Tag name/address from the drop down list for Result. Or add a new tag.

Note: Result tag needs to FLOATING_PT.

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

There are several operations under Advance Math Instructions you could use in your PLC
program.

1. Square Root & Exponent (e^ Input)
Click on to the drop down button to select Square root
Operation to see how this works. For example if the Input
Tag R1 has the value 25 stored, the Result Tag R2 would
have the output to be 5 in this case since square root of 25 is
5. This Justifies Result = Input.

130

Similarly, if you want to Obtain the Exponential of a
constant Value, then you would need to have the input
Value stored in the Input Tag R1 and the Exponential of
the Input Value applied would be stored in the Result Tag
R2.

2. Trigonometric Functions:
Note: All Trigonometric functions require radians as the inputs (not degrees); (Convert to Radian
function is available to convert degrees to radians)

For Trigonometric functions, click on to the drop down button to
select either SIN, COS or TAN Function (sine, cosine, tangent).

Here the Input Tag R1 would
have the Value stored in
Radians and the Output of
the Sine operation is Stored
in the Result Tag R2.

Input Tag Type could be either an Address such as R1 or a constant
Value.

Input Tag Type doesn't necessarily need to be of floating point type but the Result Tag must be
of floating point Type.

Similarly, you could apply the same steps for Cosine & Tangential functions.

3. Inverse Trigonometric Functions:
Note: Inverse Trigonometric functions return radians in the result tag (not degrees) (Convert to
degrees function is available to convert radians to degrees)

With the Advanced Math Functions, you would be able to calculate the Inverse Sin, Cosine or
Tangent of a Value. Shown below is an example of Inverse-SIN to show how the inverse sine
operation works.

Input Value in Radians for which the Inverse-SIN operation is to
be done is stored in the Input Tag R1 and the result of the sine
inverse operation is stored in the Result Tag R2.

Similarly, you would be able to calculate the cosine inverse and Tangential Inverse.

131

4. Logarithmic Function

Click on to the drop-down button to select Log(Base 10). Here you
could find the Logarithmic function of any value. If the Input Tag R1
has the Value 2, then the Result -> Log (2)= 0.414 is Stored in the
Result Tag R2.

Similarly, you could obtain the Natural Logarithm (Inverse function of
the exponential function) of any value by following the same steps
with the result getting stored in the Result Tag.

5. Convert to Radians and Convert to Degrees:
Here is the formula to convert degrees to radians

𝑨𝒏𝒈𝒍𝒆 𝒊𝒏 𝒓𝒂𝒅𝒊𝒂𝒏𝒔 = 𝑨𝒏𝒈𝒍𝒆 𝒊𝒏 𝒅𝒆𝒈𝒓𝒆𝒆𝒔 ∗ 𝑷𝒊 / 𝟏𝟖𝟎

Input Tag R1 would have the Value in Degrees stored
and the Output in Radians would be stored in the Result
Tag R2.

The Formula to Convert Radians to Degrees is

𝑨𝒏𝒈𝒍𝒆 𝒊𝒏 𝒅𝒆𝒈𝒓𝒆𝒆𝒔 = 𝑨𝒏𝒈𝒍𝒆 𝒊𝒏 𝒓𝒂𝒅𝒊𝒂𝒏𝒔 ∗ 𝟏𝟖𝟎 / 𝑷𝒊

132

3.3.6 Bit Logic Instructions
Bitwise Instructions operate on 16-bit or 32-bit SIGNED and UNSIGNED data types. Operations
are performed on the bit patterns of two registers. After the operation, the results are stored in
a third register (Res). Neither input is changed.

Adding Bit Logic Instructions
To configure all of the various Bitwise instructions, perform the following steps:

1. Click on any Bitwise instruction icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.
3. To enter Data/Display types, double click the instruction to open its Dialog box.

4. Select a proper Tag name/address from the drop down list for Input 1. Or add a new tag.
5. Select a proper Tag name/address from the drop down list for Input 2. Or add a new tag.
6. Select a proper Tag name/address from the drop down list for Result. Or add a new tag.
7. Choose the correct data format from the last drop down list on dialog box.
8. Data types for all Input 1, Input 2 and Result must be the same.

Adding tags:
a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

133

AND:
When power flows through this element,

the AND instruction performs a bitwise AND operation on
data values of Input 1 at memory location Aaaaa and Input
2 at memory location Bbbbb and stores the output in Res at
memory location Ccccc. Input 1 and Input 2 can be assigned a constant value. Values can be
displayed in Decimal, Hex, or Octal format. The Inputs and Res must be of the same data type.

OR:
When power flows through this element,

the OR instruction performs a bitwise OR operation on data
values of two registers Input 1 at memory location Aaaaa
and Input 2 at memory location Bbbbb and stores the
output in Res at memory location Ccccc. Input 1 and Input 2 can be assigned a constant value.
Values can be displayed in Decimal, Hex, or Octal format. The Inputs and Res must be of the
same data type.

Allowed Data Formats: SIGNED_INT_16, SIGNED_INT_32, UNSIGNED_INT_16,
UNSIGNED_INT_32.

STATUS = 0001 0011 0101 0111
MASK = 0000 1111 0000 0000
STATUS After AND:

 0000 0011 0000 0000

In the example above, Status in R300 is ANDed with MASK in R305 and the result is stored in
Status.

STATUS = 0001 0011 0101 0111
MASK = 0000 1111 0000 0000
STATUS After OR:

 0001 1111 0101 0111

In the example above, Status in R300 is ORed with MASK in R305 and the result is stored in
Status

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

134

XOR:
When power flows through this

element, the XOR instruction performs a bitwise XOR
operation on data values of two registers, Input 1 at
memory location Aaaaa and Input 2 at memory location
Bbbbb and stores the output in Res at memory location
Ccccc. Input 1 and Input 2 can be assigned a constant value. Values can be displayed in Decimal,
Hex, or Octal format. The Inputs and Result must be of the same data type.

NOT:
When power flows through this element, the

NOT instruction performs a bitwise NOT operation on data
value of Src at memory location Aaaaa and stores the output in
Dest at memory location Bcccc. Src can be assigned a constant
value. Values can be displayed in Decimal, Hex, or Octal format. Both Source and Destination
must be of the same data type.

Allowed Data Formats: SIGNED_INT_16, SIGNED_INT_32, UNSIGNED_INT_16,
UNSIGNED_INT_32.

STATUS = 0001 0011 0101 0111
MASK = 0000 1111 0000 0000
MASK After XOR:

 0001 0000 0101 0111

In the example above, Status in R300 is XORed with MASK in R305 and the result is stored in
Status.

MASK = 0000 1111 0000 0000
MASK After NOT:

 1111 0000 1111 1111

In the example above, the MASK is inverted and saved back in MASK

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

Aaaaa
TAG 1

Bbbbb
TAG 2

135

Shift Left:
When power flows through this

element, the Shift Left instruction performs a Logical
Shift Left on Input 1 at memory location Aaaaa by the
value of Input 2 at memory location Bbbbb and stores
the result in Res at memory location Ccccc. No bits are
shifted into the right and any bits shifted from the left are lost. Input 1 and Input 2 can be
assigned a constant value. Values can be displayed in Decimal, Hex, or Octal format. The Inputs
and Res must be of the same data type.

Shift Right:
When power flows through this

element, the Shift Right instruction performs a Logical
Shift Right on Input 1 at memory location Aaaaa by the
value of Input 2 at memory location Bbbbb and stores
the result in Res at memory location Ccccc. No bits are
shifted in from the left and any bits shifted from the right are lost. Input 1 and Input 2 can be
assigned a constant value. Values can be displayed in Decimal, Hex, or Octal format. The Inputs
and Result must be of the same data type.

Allowed Data Formats: SIGNED_INT_16, SIGNED_INT_32, UNSIGNED_INT_16,
UNSIGNED_INT_32.

R1 = 1100 0000 0000 0101
Shift Left by = 4
R3 after shift = 0000 0000 0101 0000

In the example above, the value of Level is shifted Left by 4. All bits are shifted left by 4 (MS bits
are lost).

R1 = 1100 0000 0000 0101
Shift Right by = 4
R3 after shift = 0000 1100 0000 0000

In the example above, the value of Level is Shifted Right by 4.

All bits are shifted right by 4 (LS bits are lost).

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

136

Rotate Left:
When power flows through this

element, the Rotate Left instruction performs a logical
Rotate Left on Input 1 at memory location Aaaaa by the
value of Input 2 at memory location Bbbbb and stores the
result in Res at memory location Ccccc. Bits are rotated
into the right and any bits shifted from the left are rotated in. Input 1 and Input 2 can be
assigned a constant value. Values can be displayed in Decimal, Hex, or Octal format. The Inputs
and Result must be of the same data type.

Rotate Right:
When power flows through this

element, the Rotate Right instruction performs a logical
Rotate Right on Input 1 at memory location Aaaaa by the
value of Input 2 at memory location Bbbbb and stores the
result in Res at memory location Ccccc. Bits are rotated
into the left and any bits shifted from the right are rotated in. Input 1 and Input 2 can be
assigned a constant value. Values can be displayed in Decimal, Hex, or Octal format. The Inputs
and Result must be of the same data type.

Allowed Data Formats: SIGNED_INT_16, SIGNED_INT_32, UNSIGNED_INT_16,
UNSIGNED_INT_32.

MASK1 = 1100 0000 0000 0101
Rotate Right by = 4
MASK2 after shift = 0000 0000 0101 1100

In the example above, MASK1 is rotated right by 4 and saved in MASK2.

MASK1 = 1100 0000 0000 0101
Rotate Right by = 4
MASK2 after shift = 0101 1100 0000 0000

In the example above, MASK1 is rotated left by 4 and saved in

MASK2.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

137

3.3.7 Move Instructions
Move Instructions allow the movement of data between registers. Move based instructions can
also be used to move constant values into registers, move blocks of data from one location to
another, or to fill a block of registers with the same value.

Power Flow
Move instructions are always true so power flow always passes through the rung. The exception
to this is the Indirect Move Element. In this case, the move is considered invalid and power flow
is false if either the source or destination register contains 0 (zero) or the length of the move
exceeds the number of elements available in the controller.

Adding Move Instructions
To configure all of the various Move Instructions, perform the following steps:

1. Click on a Move instruction icon on the right side of the screen.
2. Position the mouse over the area on the Ladder diagram where you want to insert the

instruction and click the mouse to place the instruction.
3. To enter Data/Display types, double click the instruction to open its Dialog box.

4. For a Bit Move instruction, choose if you want to move register bits to discrete or vice

versa.
5. Enter a Tag Name in the Data Type field or use the drop arrow to make your selection.
6. Select a proper Tag name/address from the drop down list for Source. Or add a new tag.
7. Select a proper Tag name/address from the drop down list for Destination. Or add a new

tag.

138

8. Enter the number of elements to move/fill (only for the Move Block and Block Fill
instructions).

9. Enter the numeric constants in the Table of Constants and select a proper Tag

name/address for the Destination from the drop down list (only for the Move table of
Constants instruction).

10. Choose the correct data format from the last drop down list on dialog box.
11. Data types for both source and destination must be the same.

Adding tags:
a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

139

Move Data:

When power flows through this element, the
Move Data instruction moves data value from Src at memory
location Aaaaa to Dest at memory location Bbbbb. Src can be
assigned a constant value. Values can be displayed in Decimal,
Hex, or Octal format. Both Src and Dest must be of the same data type.

Move Block:
When power flows through this element, the

Move Block instruction moves a block of memory area. Src at
memory location Aaaaa provides the starting address of the
memory area to move from and Dest at memory location Bbbbb
provides the starting address of the memory area to move to. The
number of elements to move is user specified. The maximum number of elements that can be
moved with one Move Block instruction is 128 for 16 Bit registers and 64 for 32 Bit registers. Src
can be assigned a constant value. Values can be displayed in Decimal, Hex, or Octal format. Both
Src and Dest must be of the same data type.

Allowed Data Formats: all register data type except BCD and ASCII

In the example above, R2 = R1 after the move.

This instruction is used to copy multiple elements. In this example, 10 registers starting from
R10 (R10-19), are copied to R50-49.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

Aaaaa
TAG 1

Bbbbb
TAG 2

Aaaaa
TAG 1

Bbbbb
TAG 2

140

Block Fill:
When power flows through this element,

the Block Fill instruction fills a block of memory area. Src at
memory location Aaaaa provides the data value to fill with;
whereas Dest at memory location Bbbbb provides the starting
address of memory area to fill to. The number of elements to fill
is user specified. The maximum number of elements that can be filled with one Block Fill
instruction is 128 for 16 Bit registers and 64 for 32 Bit registers. Src can be assigned a constant
value. Values can be displayed in Decimal, Hex, or Octal format. Both Source and Destination
must be of the same data type.

Move Table of Constants:
When power flows through this

element, the Move Table of Constants instruction loads user
specified table of constants to consecutive memory addresses
with the starting memory address defined by Dest at memory
location Aaaaa. Src is the user specified table of constants.
The maximum number of constants that can be moved are 128 for 16bit registers and 64 for
32bit registers. N displays the number of Dest addresses occupied by the user specified table of
constants. Source and Destination must be of the same data type.

Aaaaa
TAG 1

Bbbbb
TAG 2

TAG 1

Aaaaa

141

REAL numbers less than zero must contain
a leading zero (e.g., .999 is not valid, 0.999
is valid). It is possible to copy and paste
data to/from other Windows applications
including Microsoft Excel and Word.
Constants are placed one on each
individual line.

Allowed Data Formats: all register data type except BCD and ASCII.

In the example above, Value of R1 is copied to 10 registers starting with register R3 (the number
of elements in instruction is specified as 10).

In the example above, a table of constant is copied to registers starting with R2. Number of
elements are shown as N (4 in this case).

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

142

 Move Bit:
When power flows through this element, the Move Bit instruction can either

copy bits from a maximum of 16 contiguous discrete bits to a single 16-bit word register or a
single 16-bit word register to a maximum of 16 contiguous discrete bits. The two available
modes are available as follows:

• Map Register Bits to Discretes

When using the Move Bit instruction to map register
bits to discretes, Src at memory location Aaaaa provides
the address of the register from which the bits are to be
moved. The Number of Bits selected by you defines the
total number of consecutive bits which are to be moved starting from the Src address
location. Dest at memory location Bbbbb provides the address of the register where bits
from Src are being moved to. The user selectable Start Bit Number specifies the bit
location in Dest register where onwards the bits are to be moved in.

• Map Discretes to Registers

When using the Move Bit instruction to map discretes
to registers, Src at memory location Aaaaa provides the
address of the register where bits are to be moved
from. The user selectable Start Bit Number specifies the
starting point in the register where onwards the bits are
to be moved and the Number of Bits specify the total number of bits to be moved. Dest
at memory location Bbbbb provides the starting address for consecutive bits which are
being moved into from Src register.

Allowed Data Formats: SIGNED_INT_16, UNSIGNED_INT_16, BCD_INT_16, Discrete

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Discrete

Discrete Inputs I 1-128 1-128

Discrete Outputs O 1-128 1-128

Discrete Internals S 1-1024 1-1024

System Discretes SD 1-16 1-16

Bit Access Registers* R 1-16384 / 0-15 1-16384 / 0-15

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for

example for R1 you can access bit 1 using R1/0. See section 3.3.1 for more information.

Aaaaa
TAG 1

Bbbbb
TAG 2

Aaaaa
TAG 1

Bbbbb
TAG 2

143

In the example above, all 16 bits (N=16) of R1 are copied to Scratch Bits S100 to S115. The Least
significant bit of R1 is moved to S100, and the most significant to S115. Value moved of register
R1 is 255.

Discrete
Internals (S)

115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100

Value 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

In the example above, 4 bits (N=4) starting from O1 are copied to Status Tag (R300).

R300 Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value of O4 O3 O2 O1

144

3.3.8 Timer/Counter/Drum Instructions

Timer, Counter and Drum instructions allow you to control operations based on time or number
of events.

Adding Timer Instruction
To configure the Timer instruction, perform the following steps:

1. Click the Timer instruction icon side of the screen.
2. Position the mouse over the area on the Ladder diagram where you want to insert the

Timer instruction and click the mouse to place it.
3. To configure Timer types, double click the Timer instruction to open its dialog box.

4. Check the box for desired Timer
Action, Delayed ON, Delayed OFF
or Delayed ON-Retentive Counts.

5. Select one of the Time Base
options.

6. Select a proper Tag
name/address from the drop down
list for the Timer tag. Or add a new
tag.

7. The Timer instruction will auto
generate Timer Tags which can be
used for timer control. Note: It will
use 2 register address right after
the Timer address (even if they are
used elsewhere).

8. Check the Constant Preset Value if you would like to have it constant.

Adding tags:
a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

145

Timer Instruction:
When power flows to this element, the

Timer instruction starts timing. Once it reaches the Preset
Value as defined by the Timer Preset register, it will stop
timing and either allow power flow or stop power flow
based on the type of Timer instruction used. When using a Retentive timer, you must use a
Reset bit to reset the timer. When using a Non-Retentive timer then the timer will reset each
time power flow is stopped.

Timer Register and Timer Status Register:
TIMER at memory location Aaaaa defines
the timer register. The TIMER.ACC is also at
location Aaaaa. The Timer instruction will
automatically create tags at memory
locations Bbbbb and Ccccc where Bbbbb =
A(aaaa+1) and Ccccc = A(aaaa+2). The
TIMER.EN at Bbbbb/14 is the timer enable
bit which will be on when the timer is
timing. Also the TIMER.DN at Bbbbb/15 is
the timer done bit which will be on when
the timer is done.

Timer Preset Value (TIMER.PRE):
Preset at memory location Ccccc defines the
timer preset value, it is also automatically
created as soon as TIMER is defined at

location Aaaaa. Preset can also be assigned a constant value. The Timer preset value allows the
Timer instruction to count to a certain value based on the Time Base Selected.

Timer Reset (TIMER.RST)
The timer reset bit at memory location Bbbbb/13 defines the reset input bit for the Retentive
Timer ONLY. As soon as the TIMER.RST turns ON the TIMER.ACC will become zero till the
TIMER.RST is turned OFF. Note: For other types of timers the reset bit exists but does not do
anything. The other types of timers are automatically reset when they are not timing.

Time Base:
The Time Base is user selectable and allows one of the following time bases:
• 1 Millisecond
• 10 Millisecond
• 100 Millisecond
• 1 Second

Aaaaa

Bbbbb/13

Bbbbb/14

Bbbbb/15

Ccccc

Ccccc
TAG 1.PRE

Aaaaa
TAG 1

146

e.g. If Preset = 15 and Time Base = 10 Millisecond, then the Timer instruction will time for 150
Milliseconds. Similarly, if Pre =11 and Time Base = 100 Millisecond, then the Timer instruction
will time for 1100 Milliseconds.

Types of Timer:
There are three types of Timers available as specified by you:
Delayed ON, Delayed OFF, and Delayed ON-Retentive Counts.

Delayed ON: When power flows to this type of Timer it starts
timing until it reaches the Timer Preset Value. Once it

completes the specified count, it allows power flow through this element. If power flow to this
Timer stops before it reaches the Timer Preset value, it resets itself to zero and starts timing
from 0 when power flows to this instruction again.

Delayed ON Timing Diagram
Shows Timer with Delayed ON that counts to 3 when power flows to Timer Instruction.

Delayed OFF: This type of Timer allows power flow though it as long as power flows to this
element. When power flow STOPS to this type of timer, it still allows power flow through it and
starts counting at the same time. When the Timer reaches the Timer Preset Value, it STOPS the
power flow through it. If power flows back to this Timer before it reaches the Timer Preset
value, it resets itself and starts timing from 0 again anytime power flow stops to it.

Delayed OFF Timing Diagram
Shows Timer with Delayed OFF that counts to 3 when power flows to Timer Instruction stops.

147

Delayed ON – Retentive Counts: When power flows to this type of timer it starts timing until it
reaches the Timer Preset Value. Once it completes the specified count, it allows power flow
through this element. If power flow to this timer stops before it reaches the count, it retains the
count and starts from the point where it had stopped timing. Once it reaches the Timer Preset
Value it will allow power flow through it. This remains true unless the Reset Input Bit is toggled,
at which point it resets itself and starts timing whenever power flows to it.

Delayed ON – Retentive Counts Timing Diagram
Shows Timer with Delayed ON — Retentive Counts that counts (retentively) to 5 when power
flows to Timer Instruction.

Data formats supported: UNSIGNED_INT_16

In the example above, the timer is an ON timer, with 0.001’s time base. The preset value is R3,
and accumulated value in R1. If R1=1000, then once timer is enabled (S1 is ON), it will timer for
1000x0.001=1s then power will flow out of it energizing the fan.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Discrete

Bit Access Registers* R (aaaa + 1) / 13-15

Registers

Registers Internals R 1-16384 (aaaa + 2)
*Bit level access to registers is possible. Timer instruction will auto generate these discrete bit access registers and they can be used to
control/monitor the Timer in the rest of your ladder logic.

148

Counter Instruction:
When called, the Counter instruction

will count up or down by increments of one until the
counter reaches the data value of the Preset Value
register. The counter will then allow power flow through
the rung.

Adding Counter Instruction
To configure the Counter instruction, perform the following steps:

1. Click the Counter instruction icon side of the screen.
2. Position the mouse over the area on the Ladder diagram where you want to insert the

Counter instruction and click the mouse to place it.

3. To enter Preset/Counter types, double
click the Counter instruction to open its
dialogue box.

4. Check the box for desired Counter
Action (Up or Down).

5. Select a proper Tag name/address from
the drop down list for the Counter tag. Or
add a new tag.

6. The Counter instruction will auto
generate Counter Tags which can be used
for counter control. Note: It will use 2
register address right after the Counter
address (even if they are used elsewhere).

7. Check the Constant Preset Value if you would like to have it constant.

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

Counter:

Ccccc
TAG 1.PRE

Aaaaa
TAG 1

Bbbbb/13
TAG 1.RST

149

When the power flow to this element is switched from OFF (0) to ON (1), this instruction keeps
track of the number of times power flow switches. Once it reaches its specified preset, it allows
power flow through it.

Counter Register and Counter Status
Register: COUNTER at memory location
Aaaaa defines the Counter register value.
The COUNT.ACC is also at location Aaaaa.
The Counter instruction will automatically
create tags at memory locations Bbbbb and
Ccccc where Bbbbb = A(aaaa+1) and Ccccc =
A(aaaaa+2). The COUNTER.EN at Bbbbb/14
is the counter enable bit which will be ON
when the counter is counting (COUNT.ACC
not equal to COUNT.PRE). Also the
COUNT.DN at Bbbbb/15 is the counter done
bit which will be on when the counter is
done (COUNT.ACC equal to COUNT.PRE).
Note: If counter is using 32 bit register then
memory addresses used are Bbbbb =
A(aaaa+2) and Ccccc = A(aaaa+4).

Counter Preset Value (COUNT.PRE):
Counter preset at memory location Ccccc defines the Counter Preset Value, it is also
automatically created as soon as COUNT is defined at location Aaaaa. This is the value that the
counter will increment to or decrement from. Counter preset can occupy a 16 or 32 bit register
and can also be assigned a constant value.

Reset Input Bit (COUNT.RST):
Reset at memory location Bbbbb/13 defines the Reset Input Bit for the Counter instruction.
When this bit is enabled, the Counter instruction is reset to its default value based on the type
of Counter instruction being used. There are two types of counters, Up Counter and Down
Counter, which are user selectable as follows:

Up Counter: When the Reset Input Bit is disabled (0) and the power flow to the counter
instruction switches from 0 to 1, the count register increments one count. When the Counter
Preset Value and Counter register value become equal, power flows through it. Whenever the
reset input is enabled the Counter register value is set to 0 and the power flow through it is
stopped.

Up Counter Counting Diagram

Aaaaa

Bbbbb/13

Bbbbb/14

Bbbbb/15

Ccccc

150

Counts up to the preset of 3. Reset will reset value to 0. Once preset reached output is ON and
counter will no longer increment.

Down Counter: When the Reset Input Bit is disabled (0) and the power flow to the counter
instruction switches from 0 to 1, the count register decrements one count. When the Counter
Preset Value and Counter register value become equal, power flows through it. Whenever the
Reset input is enabled the Counter register value is set to Counter Preset Value and the power
flow through it stops.

Down Counter Counting Diagram
Counts down from preset of 3. Reset will reset value to 3. Once zero reached output is ON and
counter will no longer increment.

Allowed Data Formats: UNSIGNED INT 16, UNSIGNED INT 32

In this example, the counter is a
16 bit UP counter [U16]. Once the
count value = Preset value, the
power flows out of the
instruction.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Discrete

Bit Access Registers* R (aaaa + 1) / 13-15

Registers

Registers Internals R 1-16384 (aaaa + 2)
*Bit level access to registers is possible. Counter instruction will auto generate these discrete bit access registers and they can be used to

control/monitor the Counter in the rest of your ladder logic.

151

Drum Instruction

Introduction to Drum Sequencing
Conventionally, electro-mechanical drums are used in control of processes where a certain
number of steps is repeated over time. Such drums are a popular control technique because
they save a lot of logic programming. Drum sequencing instruction in EZRack PLC mimics the
electro-mechanical drums. There are 2 types of Drums, 1) Timed and 2) Timed with Event.

• Each row on a drum chart represents a step on the drum. When rung power condition is
true the drum resets to a particular reset step defined by the user.

• Each column in a drum chart represents an output from the drum. We can have 16
discrete outputs numbered from 1 to 16. The outputs are updated during each step.

• The Drum advances from one step to the next per the timer or after triggered by an
external event. A Jog tag can also be used to control the drum movement.

• Checked boxes on the drum chart mark ON states of outputs on a particular step. Empty
boxes represent OFF outputs.

• Each Drum sequences up to 16 steps having 16 discrete outputs per step.
• Counts have a specified time base and every step has its own counter along with an

event to trigger the count.
• When power flows through this element, the Drum instruction starts its sequence while

EZRack PLC continues with the logic after this instruction.

Adding the Drum Instruction:

Outputs

Steps

Count of how long
at each step

OFF Output Bit ON Output Bit

152

To configure the Drum instruction, perform the following steps:

1. Click on the Drum icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.
3. Double click the instruction to open its dialog box.
4. Click on the Outputs tab on the top to define your Output bits. Add or select tags for

total outputs used (Min: 1 and Max: 16)
5. Return to the main dialog box by clicking onto the Instruction Details tab.

6. Select the Drum type (timed or timed with event).
7. Select the Preset Step (default preset step is 1).
8. Choose the Time base (1 ms, 10 ms, 100 ms or 1s).
9. Select or Add Reset, Current Step, Current Count and Jog tags.
10. Define counters for each step.
11. Check the ON-Off states of outputs in each step.

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name.
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

153

Drum
When power flows through this element,

the Drum instruction starts a sequence of outputs which
can be either Timed or Timed with Event. The maximum
number of steps that can be defined in a sequence is 16
with the maximum number of outputs per step being 16 as
well.

Drum Type:
There are two types of user selectable Drum types:

• Timed Only
When you select this option, the Drum instruction completes its sequence based on
time specified by Count with specified Time Base only. When the Count is completed, it
enables (1) or disables (0) the specified outputs as selected by the user through
checkboxes.

• Timed with Event
When you select this option, the Drum instruction completes its sequence based on the
time specified by Count with specified Time Base and Events. When this selection is
chosen, a tab for Events is available for you to select the desired addresses for events
for every step.

Step #:
If using the Timed Only Drum instruction, the total number of programmable steps is 16. When
using the Timed with Event Drum instruction then the total number of programmable steps is
limited to 10.

Counts:
Every Step has a Count associated with it. The Count is a user specified constant which controls
the duration of time before a certain step is executed. The Count can have a different time base
as specified by the user in Time Base.

Time Base:
Time Base allows the Count variable to be mapped to different Time Bases as follows:
• 1 millisecond
• 10 millisecond
• 100 millisecond
• 1 second
If the Time Base is set to 1 millisecond, then a Count value of 10 would correspond to 10
milliseconds. Similarly, if the Time Base is set to 10 milliseconds, then a Count value of 10 would
correspond to 100 milliseconds and so on.

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc

TAG 3

Ddddd

TAG 4

154

Preset Step:
This user selected value is used in conjunction with the Reset Tag. If the Reset Tag is enabled (1)
then the drum sequence jumps to the step specified by the Preset Step.

Reset Tag:
Rst address at memory location Aaaaa is used to reset the drum sequence to a user selected
Step location every time the Rst bit transitions from disable (0) to enable (1). When Rst is
enabled, the Drum Sequence is immediately shifted to the Preset Step regardless of its current
position and Count value.

Jog Tag:
Jog address at memory location Bbbbb is used to jog the Drum Sequence to the next step. If
present on Step 16, it will be jogged to step 1. When Jog is enabled, the Drum Sequence is
immediately shifted to the next step regardless of its current position and Count value.

Current Step Tag:
Stp address at memory location Ccccc is used by the Drum instruction to write the current value
of Step where Drum Sequence exists at any given time during its operation.

Current Count Tag:
Cnt address at memory location Ddddd is used by the Drum instruction to write the current
value of Count where the Drum Sequence exists at any given time during its operation.

Outputs:
The total number of Outputs that can be used per Step is 16 which is reduced to 10 when using
the Timed with Event type Drum instruction. Every Output utilized in any step must have a
Discrete memory location assigned to it. Memory locations are assigned in the second tab when
adding a Drum instruction. During Drum instruction operation, if the checkbox corresponding to
a certain Output is checked, it will be enabled, otherwise it is disabled.

Events:
This is an optional tab which only appears if the Timed with Event type Drum instruction is used.
For every Step utilized in the Time and Event type Drum instruction, there must be a
corresponding Event address assigned to a discrete bit. During Drum Sequence, after the time
corresponding to a certain Step is elapsed, the instruction looks at the corresponding Event
address. If enabled, Drum Sequence will advance to the next step; otherwise it will start the
Count again for the same Step. Once the Count is elapsed it will look again at the Event address
to see if it’s enabled. If enabled, it will move forward to the next Step, otherwise it will repeat
until the corresponding Event address is enabled.

155

Allowed Data Formats: DISCRETES and UNSIGNED_INT_16

In this example, once the Drum is enabled
(S1 is ON), it will activate outputs like S3
following the set pattern. The outputs are
used to control process like here it turns
on a Motor (O1).

Memory Type Syntax (A, B) Range (aaaa) Range(bbbb)1

Discrete

Discrete Inputs I 1-128 1-128

Discrete Outputs O 1-128 1-128

Discrete Internals S 1-1024 1-1024

System Discretes SD 1-16 1-16

Register Discretes

Bit Access Registers* R 1-16384 / 0-15 1-64 / 0-15
1Jog tag behaves like positive and negative edge triggers and therefore is restricted to first 64 registers when used with

bits within word registers

Memory Type Syntax (C, D) Range (cccc) Range (dddd)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

156

3.3.9 Program Control Instructions
Use the Program Control instructions to alter the sequence of Main Logic Program scan.

Adding Program Control Instructions
To configure Program Control instructions, perform the following steps:

1. Click the instruction icon on the right side of the screen.

2. Position the mouse over the Ladder Logic and click the mouse to place the instruction.

3. Double click the Jump, For Loop, and Call Subroutine instruction to open the
instruction’s dialog box. Next and Return do not have dialog boxes.

A) Jump Instruction
Select a proper Rung label from the drop
down list. Labels need to be added before
using this instruction. Please see section
2.5.5 for more information on adding
labels to rungs.

B) For Loop Instruction
Select a proper Tag name/address from
the drop down list for the Loop Count or
enter a number in the Constant Value
field.

C) Call Subroutine Instruction
Select a Subroutine from the drop down
list.

157

Jump:
When power flows to this element, the Jump

instruction skips from the rung where
used to a rung with the Label specified in the Jump instruction
and continues executing the program thereafter. Before the
Jump instruction skips to the specified label instruction, the rung
containing the Jump instruction is executed first. The Jump
instruction can only be used to skip forward in the direction of
the ladder logic flow. When a new rung is created, you can add
“label” and “comments” for every rung added by right clicking on
the Rung sidebar. Only rungs which are labeled can be utilized by
the Jump instruction. The Select Label pull down menu only
shows rungs which have been labeled by the user.

For Loop:
When power flows to this element, the For

Loop instruction loops/repeats the ladder logic (RLL) between
itself and the Next instruction for the number of times specified
by the data value of the Loop Count at memory location Aaaaa.
When the For Loop instruction is done executing the RLL between
itself and the Next instruction by the number specified by the Loop Count, it allows execution of
ladder logic after the Next instruction. The Loop Count can also be assigned a constant value.

Allowed Data Formats: UNSIGNED_INT_16

Next Statement:
When power flows to this element, the Next Statement

instruction specifies the end point of the For Loop instruction and shifts power flow back to the
point where the For Loop instruction is located. Once For Loop execution is completed for the
number of times specified by the Loop Count, power will flow through this element.

Memory Type Syntax (A) Range (aaaa)

Registers

Input Registers IR 1-64

Output Registers OR 1-64

Registers Internals R 1-16384

Aaaaa
TAG 1

158

Call Subroutine:
When power flows to this element,

the Call Subroutine instruction invokes a subroutine as
specified by SUB. You can either specify an existing
Subroutine, or create a new one. When a subroutine is
added in SUB which already does not exist, it is automatically added under Subroutine Logic.
Once a subroutine is used, it must contain a Return instruction to return back to the main logic.

Note: Subroutines are very useful for organizing the main body of ladder logic. They can be
utilized to break the body of ladder logic into sections which are either specific to a certain
operation or are repeated in the main logic. If certain logic is to be repeated several times, it is
useful to place that logic in a subroutine and call that subroutine by using the Call Subroutine
instruction instead. By utilizing subroutines efficiently, the number of rungs in ladder logic could
be reduced drastically.

Return Statement:
When power flows to this element, the Return Statement

instruction specifies the end of the Subroutine logic where present and returns back to the Main
logic. The Return statement can only be used in a Subroutine. Any logic after the return
statement is not executed so if you want to save no longer need logic you can do so in
subroutines.

In this example, any instructions between For and Next will
be executed multiple times. The number of times the
instructions will be executed is equal to the value of the
“Loop Count” variable.

When power flows to this instruction, subroutine
named “Subroutine” would be called

In this example, when power flows to this instruction, the execution
jumps to “Rung 31”.

.

159

3.3.10 String Instructions

A string is succession of characters. EZRack PLC’s string instructions operate on ASCII String Data
files only. Please see Section 3.3.1 for more information on ASCII String Data type.

Adding String Instructions

1. To configure String instructions, click on the String instruction icon on the right side of
the screen.

2. Position the mouse over the Ladder diagram and click the mouse to place the
instruction.

3. To enter Tag Name/Address, double click the instruction to open its dialog box.

4. To configure the String Move and String Compare instructions, perform the following
steps:

a. Select a Tag name/address from the drop down list for the Source register
(Source1 for String Comparison Instruction). Or add a new tag.

b. Enter a value in the Number of Characters field.
c. Select a Tag name/address from the drop down list for the Destination register

(Source 2 for String Comparison Instruction). Or add a new tag.

5. Adding String Length Instruction
a. Select a Tag name/address from the drop down list for the ‘String’ register. Or

add a new tag. Needs to be ASCII String tag.
b. Select a Tag name/address from the drop down list for the ‘Save in’ register. Or

add a new tag.

6. For adding String Pack and Unpack please see individual sections for those instructions.

Adding tags:
a. If need be you can add a new tag by entering a new Tag Name.
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

160

String Move:
When power flows through this element,

the String Move instruction moves an ASCII string with a starting
address of Src at memory location Aaaaa to Dest at memory
location Bbbbb by the number of characters defined by the user.
This instruction can move up to 126 characters with every two characters occupying one ASCII
register.

For example, if the number of characters to move is 2, this instruction will move the single Src
register at memory location Aaaaa to Dest at memory location Bbbbb. If the number of
characters to move is 4, then this instruction will move TWO consecutive registers with a
starting address of Src to TWO consecutive registers with starting address of Dest. Similarly, 6
characters would move THREE consecutive registers, 8 characters would move FOUR
consecutive registers and so on.

Data Format: ASCII only

In the example above, the “number of characters” defined in the dialog box are moved starting
from R100 to the destination starting from R300. If a null is found in the source string before all
the “number of characters” are moved, the rest of the characters are padded with null in the
destination.

Memory Type Syntax (A) Range (aaaa)

Registers

Registers Internals R 1-16384

Aaaaa
TAG 1

Bbbbb
TAG 2

161

String Compare:
The String Compare instruction is used to

compare an ASCII String with a starting address of Src1 at memory
location Aaaaa and Src2 at memory location Bbbbb by the number
of characters specified by the user. If Src1 = Src2 power will flow
through this element. This instruction can compare up to 126 characters with every two
characters occupying one ASCII register.

For example, if the number of characters to compare is 2, this instruction will compare the
single Src1 register at memory location Aaaaa to Src2 at the memory location Bbbbb. If the
number of characters to compare is 4, then this instruction will compare TWO consecutive
registers with a starting address of Src to TWO consecutive registers with a starting address of
Src2. Similarly, 6 characters would compare THREE consecutive registers, 8 characters would
compare FOUR consecutive registers and so on.

Data Format: ASCII only

In the example above, the string starting from R100 is compared with the string at R299. The
strings are compared up to the “number of characters”, or 126, or up to a null character in
either of the sources, whichever occurs first.

Memory Type Syntax (A) Range (aaaa)

Registers

Registers Internals R 1-16384

Aaaaa
TAG 1

Bbbbb
TAG 2

162

String Length:
When power flows through this element,

the String Length instruction counts the number of characters in
a null-terminated ASCII string specified by the starting address of
Str at memory location Aaaaa. The result is stored in Len at
memory location Bbbbb.

Allowed Data Formats: UNSIGNED_INT_16, UNSIGNED_INT_32, and ASCII_STRING.

In the example above, when power flows to the instruction, the length of the string starting at
R100 is computed. The computation stops when a null character is found. The length value is
saved in R5.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

Aaaaa Aaaaa
TAG 1

Bbbbb
TAG 2

163

Adding the Pack Instruction:
To configure the Pack instruction, perform the following steps:

1. Click on the Pack icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.
3. Double click the instruction to open its dialog box.
4. Select or Add Output Tag. Note: The total length of Output has to be equal or greater

than the total combined lengths of the inputs to be packed.

5. Add up to 16 Inputs you would like to combine in order of combination by clicking Add

Input. (Input 1 will be first in the output, Input 2 is second, etc.)
6. In the dialog Select or Add Input.

a. For ASCII String Inputs specify the Input length.

b. For other Register types specify both the length, the
number of digits, Fill type and the decimal position.

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name.
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

164

String Pack:
When power flows through this element,

the String Pack takes any register type and combines them into
an ASCII string. The resulting ASCII string is stored at memory
location Aaaaa. The instruction takes up to 16 different inputs
from multiple different memory locations. Any input can also be a constant.

Note: This is the same instruction that can also be found in the Function Instruction section. It is
also located here for convenience sake.

For each input the string length to pack needs to be specified. If an input has a floating point
data type it can either be rounded off to the nearest integer value or truncated. When an input
of integer or floating point data value is converted, the number of digits, decimal position and
justification (leading zeros, leading spaces, or trailing spaces) must be assigned. Power will stop
flowing through this element if an error occurs such as overflow, underflow, or divide by zero.

The String Pack instruction will only combine the inputted length specified for each input
element even if the input’s size is greater e.g. if length specified is 10 but ASCII string is 12 long
will only pack the first 10 characters of the ASCII String.

Note: For signed registers and registers with decimals please note that the length to pack needs to be one greater
than the number of digits due to the need for a +/- sign and or decimal point. If number has both then the length to
pack needs to be 2 greater than the number of digits.

Note: For Floating point registers be mindful of the scientific notation. Based on the numeric value of the register the
number can be displayed in decimal notation (##.##) or scientific notation (#.##e+##). For scientific notation the length
to pack needs to be four greater than the number of digits.

Allowed Data Formats: all register data types.

Memory Type Syntax (A, Inputs) Range (aaaa) Inputs

Registers

Output Registers OR 1-64

Registers Internals R 1-16384 1-16384

Aaaaa
TAG 1

N

165

In this example, string R100, register R20,
and string R120 are packed together into
R300 when power flows. For this example it
would create string “Current Temperature is
20°C”. With string R100 being 23 Char long
(“Current Temperature is “). The register
R20 would be the temperature with length 2
and Number of digits 2 as well (“20”). Finally
string R120 would be 2 char long (“°C”).

In this example, string R100, and register
R20 are packed together into R300 when
power flows. For this example it would
create string “Current calculated value is
2.45e+03”. With string R100 being 28 Char
long (“Current calculated value is “). The
register R20 would be the value with length
8 (“2.45e+03”), Number of digits 3 (“2.45”),
and Decimal Position is 2 (“.45”).

166

Adding the Unpack Instruction:
To configure the Unpack instruction, perform the following steps:

1. Click on the Unpack icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.
3. Double click the instruction to open its dialog box.
4. Select or Add Input Tag. Note: Input Length has to be equal or greater than the total

combined length of the outputs.

5. Using the Add Output button add up to 16 Outputs you would like to unpack the input

into. These outputs can be of any type and only the length needs to be specified.
6. In the Add Output dialog select or add an output tag. Then specify the length to be

outputted to the tag.

Adding tags:
a. If need be you can add a new tag by entering a new Tag Name.
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

167

String Unpack:
When power flows through this element,

the String Unpack takes an ASCII String and splits it into different
registers of any type. The Input ASCII string is stored at memory
location Aaaaa. The instruction outputs to up to 16 different
outputs from multiple different memory locations. For each output the string length to unpack
needs to be specified. Power will stop flowing through this element if an error occurs such as
overflow, underflow, or divide by zero.

Note: This is the same instruction that can also be found in the Function Instruction section. It is also
located here for convenience sake.

The instruction will split the ASCII string starting from the beginning into the different registers
per the specified length. Therefore if the length of the Input String is shorter than the total
length of the outputs, only the outputs up to the Input String length will be split into.

Note: An ASCII register takes 2 char per register address, e.g. for 10 char need R1-R5. Only the first address needs to be
specified, the others are automatically used.

Note: An ASCII character cannot be split into a non-ASCII register. Therefore if such is attempted the output register
will be set to 0, e.g. if try to input AB into UNSIGNED_INT_16 this will result in the register being 0.

Note: For Floating point registers be mindful of the scientific notation. Floating point values can be displayed in
decimal notation (##.##) or scientific notation (#.##e+##). For scientific notation the length to unpack needs to be four
greater than the number of digits.

Allowed Data Formats: all register data types.

Examples of how it will unpack different length strings:

Example 1:
Input: ABCDEF
If splitting into Output 1 (Length 10) and Output 2 (Length 10).
Then only Output 1 will be used since Input length < Output 1 length.
Output 1: ABDCEF____
Output 2: __________
Example 2:
Input: ABCDEFGHIJK
If splitting into Output 1 (Length 10) and Output 2 (Length 10).

Memory Type Syntax (A, Outputs) Range (aaaa) Outputs

Registers

Output Registers OR 1-64

Registers Internals R 1-16384 1-16384

Aaaaa
TAG 1

N

168

Then both Output 1 and Output 2 will be used but since Input length < (Output 1 + Output 2)
length, then only some of Output 2 will be used.
Output 1: ABDCEFGHIJ
Output 2: K_________

In this example, R300 is unpacked into string
R100, register R20, and string R120 when
power flows. For this example it would take
apart string “Current Temperature is 20°C”.
With string R100 being 23 Char long
(“Current Temperature is “). The register R20
would be the temperature with length 2
(“20”). Finally string R120 would be 2 char long (“°C”).

In this example, R300 is unpacked into string
R100 and register R20 when power flows.
For this example it would take apart string
“Current calculated value is 2.45e+03”. With
string R100 being 28 Char long (“Current
calculated value is “). The register R20 would
be the value with length 8 (“2.45e+03”).

169

3.3.11 Communication Instructions
Use Communication instructions to open and close the serial port for sending ASCII data to
communicate with external devices.

Adding Communication Instructions
To configure String instructions, perform the following steps:

1. Click on the Communication instruction icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.
3. Double click the instruction to open its dialog box.

Adding Open Port Instructions
To configure the Open Port instruction, perform the following steps:

1. Select a Baud Rate using the drop down list.

2. Select a Parity value (None, Odd, or Even) using
the drop down list.

3. Select Data Bits (7 or 8) using the drop down
list.

4. Select Stop Bits (1 or 2) using the drop down
list.

5. Select Mode (RS232, RS422, or RS485) using the
drop down list.

6. Select a Protocol (None, Xon / Xoff, Modbus Master, Modbus Slave) using the drop
down list.

Enter Optional Parameters:

1. Select how the Char Sequence is inputted (Hex or ASCII).
2. Enter Send Start Characters in the Start Characters field (up to 4 characters).
3. Enter Send End Characters in the End Characters field (up to 4 characters).
4. Enter Receive Start Characters in the Start Characters field (up to 4 characters).
5. Enter Receive End Characters in the End Characters field (up to 4 characters).

170

Adding Send To and Receive From Port Instructions
To add the Send to Port and Receive From Port instructions, perform the following steps:

1. Select or Add an ASCII tag that
contains the string to be sent in the
Source Tag field using the drop down
list (for a Receive instruction: the
String that will receive the characters
from the serial port in the
Destination Tag field).

2. Select an integer register used by the instruction for status in the Control Register Tag
field using the drop down list. The following table describes the control bits in the
register:

Bit Number Function

Bit 0 (lsb) Enable (0 = Disabled, 1 = Port is Open AND Instruction is
Enabled (Power flows to instruction))

Bit 1 Serial transmission done (1= function (transmit or receive)
done, 0=not done)

Other bits of the register are used for internal purposes and change state during
transmission/receiving.

3. Select or Add an integer register that displays the number of characters transferred

from the source tag to the serial output buffer in the Character Count Tag field using the
drop down list (for a Receive instruction: the Number of characters transferred from the
serial port to the destination tag).

4. Check either Send Start Character or Send End Character box if needed.

171

Adding Send to Marquee Instruction
To add the Send to Marquee instruction, perform the following steps:

1. Select or Add a Source Tag
name/Address using the drop down list.

2. Check the Use Mask box and enter a
value, if you want to use Mask capabilities
to compute message number.

3. Enter a numeric constant as an Offset
value to the message number if desired.

4. Select or Add a Message Status Tag
name/Address using the drop down list.

5. Check one option for the action for Unmatched message numbers.

6. Add/Edit the Message database by clicking on the View/Edit Message Database button.

Adding Modbus Master Instruction
Please go to Chapter 7.

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name.
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

172

Open Port:
When power flows through this element,

the Open Port instruction opens only Port 1 serial port using
user specified parameters available as follows:

• Baud Rate: 1200, 2400, 4800, 9600, 19200, 38400
• Parity: None, Odd, Even
• Data Bits: Seven, Eight
• Stop Bits: One, Two
• Mode: RS232, RS422, RS485
• Protocol: No Protocol, XOn /XOff, Modbus Master, Modbus Slave

Note: When the serial Port 1 is
being used for 3rd party
communication, it cannot be used
to communicate with the EZRack
PLC Designer Pro. Please therefore
use other communication options
like Ethernet or Micro-USB.

Send Character Sequence can be used to add up to a maximum of FOUR characters in the beginning
and/or ending of every command that is sent out using this port. The 4 characters must be separated by a
comma.

Receive Character Sequence can also be used to verify a maximum of FOUR characters in the beginning
and/or ending of every command that is received using this port. The 4 characters must be separated by a
comma. You can also specify to make the Receive Character Sequence the same as the Send Character
Sequence.

If HEX values are used for the two sequences, two characters must be used to specify 1 HEX value.

In this example, if S4 is on, the port will be
opened with the parameters shown in the
instruction. Please note that the Port command is
executed ONLY once every time S4 changes state
from 0 to 1.

NOTE: The Open Port instruction is executed once every time the power flows to the instruction. It is recommended
that the port be opened once, unless the com parameters have to be changed. In that case, the port should first be
closed, and then reopened with different parameters.

173

Send to Serial Port:
When power flows through this

element, the Send to Serial Port instruction will send an ASCII
string present in Src at memory location Aaaaa to the RS422
port. The control and character count used for sending the
ASCII string is specified by Cnt at memory location Ccccc and Ctrl at memory location Bbbbb,
respectively.

This instruction can only send out the specified ASCII string if the corresponding serial port has
been already opened by the Open Port instruction in advance. If the serial port has not been
initiated, the Send to Serial Port instruction will not send the ASCII string to the specified port.

Start and End characters can also be sent along with the ASCII string being sent out from the Src
register. You can specify Start and/or End characters to be included along with the ASCII string.
The starting and ending characters are specified in the Open Serial Port Instruction.

Receive From Serial Port:
When power flows through this

instruction, the Receive From Serial Port instruction will
receive an ASCII string from the serial port and store it in
Dest at memory location Aaaaa. The control and character
count used for receiving the ASCII string is specified by Cnt at memory location Ccccc and Ctrl at
memory location Bbbbb, respectively.

This instruction can only receive the specified ASCII string if the corresponding serial port has
been already opened by the Open Port instruction in advance. If serial port has not been
initiated, the Receive from Serial Port instruction will not receive the ASCII string.

Start and End characters can also be received along with the ASCII string being received. You can
specify Start and or End characters to be verified when received along with the ASCII string. The
starting and ending characters are specified in the Open Serial Port Instruction.

Close Port:
When power flows through this element, the

Close Port instruction closes the serial port previously opened for communication by the Open
Port instruction. Once the port is closed, it cannot be used unless it is re-opened by the Open
Port instruction.

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

174

Allowed Data Formats: ASCII and UNSIGNED_INT_16.

In the example above, if S5 is ON (and the Port is Open), the Send Port command would send
the ASCII string as per programmed parameters. If the port is not yet open, the instruction will
do nothing, and the Enable Bit in the control register will remain 0, even if the S5 is on.

In the example above, if S6 is ON (and the Port is Open), the Send Port command would receive
the ASCII string as per programmed parameters. If the port is not yet open, the instruction will
do nothing, and the Enable Bit in the control register will remain 0, even if the S6 is on.

In the example above, if power flows to the close port instructions, the opened serial port is
closed. Once the port is closed, it will not send any serial communication for any command
(such as Send to Port, Send to Marquee) without reopening the port.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

175

Send to Marquee:
When power flows through this

instruction, the Send to Marquee instruction sends out a
message to a marquee based on the message number as
specified in Src at memory location Aaaaa and Message
Status Tag as specified by Ctrl at memory location Bbbbb.

The Send to Marquee instruction must be used in conjunction with the Open Port instruction. If
the serial port is not enabled by the Open Port instruction in advance, the Send to Marquee
instruction will not be able to send messages to a marquee.

Please Note:
1. The port should be already open before this command can be used.
2. The Send Marquee sends the message to Marquee only once each time power flows to it (rung condition becomes
true) and does not send again until the Power flow is cycled to it (rung condition goes to false and true again).

The Send to Marquee instruction uses a message database. You can place multiple Send-to-
marquee instructions in your ladder logic. But there is only a single message database. The
database contains messages uniquely identified by message numbers. The Send-to-marquee
instruction looks up messages from this database using the value in its source register as the
Message number (or computed from it-- see below). If a message is found matching the number
in source register, it is sent to the Marquee. If a matching message is not found, then the action
depends on the option selected for unmatched messages.

The messages can have embedded variables in them, allowing you to display dynamic data on
the marquee.

Message Number Computation:
Src can also be assigned a constant value along with option to use Mask (in HEX). You can also
add an offset to the message number based on the value specified. The Message number is
computed as follows:

Message Number = [(Source AND MASK) >> number of right 0s in MASK] + Offset

MASK allows you to use only selected bits from a word as a message number. Offset
allows you to add a constant to the message number which allows grouping of
messages.

Example: Source number = 0x1234, MASK = 0xFFF0

Source AND MASK = 0x1230
Shift by 4 = 0x0123 (There are 4 zeros on right of MASK)
Add Offset to get the message number

Aaaaa
TAG 1

Bbbbb
TAG 2

176

Message Status Tag:
Ctrl is used by the Send to Marquee instruction to specify the status of the message being sent
to a marquee. If the message is being transmitted to the serial port, the bit 0 (lsb) of Ctrl is
enabled (1). When the message is successfully sent to the serial port, the bit 1 of Ctrl is enabled
(1).
Message Database:
When the Send to Marquee instruction is assigned a message number through Src, the message
corresponding to the message number is selected for transmitting to the serial port. The
Message database is populated by using “View/Edit Message Database” tab. When adding a
new message the text can be assigned a message number and attributes such as blinking,
scrolling, and centering of messages etc. The very first message in the Message Database is the
default message. This message is sent to the specified marquee(s) (broadcast or a certain unit)
when the message number assigned by Src does not have the matching message in this
database.
Note: Only messages with the correct message number as per Src register will be displayed.

Actions for Unmatched Messages:
If the Src register points to a message number that does not exist in the Message Database, then
there are three options, one of which can be selected by the user for appropriate action.

• Send Default Message: Sends a “Default Message” as specified in the Message Database
• Send Blank Message: Sends out a blank message with no text; clears the display line of

the marquee(s) specified in the Default Message
• Do Nothing: No action is taken if the correct message is not found

Allowed Data Formats: ASCII, UNSIGNED_INT_16, UNSIGNED_INT_32, SIGNED_INT_32,
and BCD_INT_16.

In the example above, if S5 is On (AND
the Port is open and not busy), the
message is sent to Marquee. The message
is sent ONLY once every time S5 changes
state. So to refresh the message on the
Marquee (for example, if an embedded

variable changed), ensure that S5 changes state. Another example for the send marquee is
shown on next page. In this example, the logic is monitoring 3 temperature ranges, and displays
one of the 3 messages based on the temperature value.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

177

Send to Marquee Example:

178

Modbus Master:
Please see Chapter 7 for more information on EZRack PLC working as

Modbus Master or Modbus Slave.

Basic Modbus overview:
EZRack PLC provides connectivity to other devices over Modbus RTU and Modbus TCP/IP
protocol. You can use EZRack PLC either as a Modbus Master/Client or a Modbus Slave/Server.

When used as a Modbus Master/client, EZRack PLC communicates and exchanges data with
other Modbus slaves/servers. When used as a Modbus Slave, the EZRack PLC can respond to
Modbus commands from a Master. The serial port on EZRack PLC is used for the Modbus RTU
connection. The Ethernet Port is used for Modbus TCP/IP connection.

Modbus Master Instruction basics:
Select Modbus Master Instruction from the Menu item Instruction> Communication>Modbus
or from the Instruction side bar. The instruction on ladder logic appears as follows:

Please note the following about the Modbus Master instruction:

• The instruction is initiated when the rung is true (i.e. all instructions in the rung
preceding the Modbus instruction are true)

• The instruction involves sending a command to the addressed slave, and processing the
reply back from the slave, which is asynchronous to the ladder scan. The Power flows
out of the instruction only after the instruction is completed, i.e. after either the reply is
received or the instruction times out. Control Word can be used to see the progress of
the instruction.

• If the rung condition becomes false before the completion of the instruction, the
instruction is not completed. The sending of the command is completed but the reply is
not processed, even if received. If the command was a write command, the values MAY
be written, but cannot be guaranteed.

• It is advisable to use check the error code register for any potential errors after the
instruction is completed.

179

Double click to bring-up the dialog box:

The following attributes need to be set in the Modbus Master Dialog box.

1. Communications
Use this dropdown to select whether RTU or Modbus TCP/IP is used. If TCP/IP is used a
filed will appear to input the IP Address of the Slave.

Select whether using Modbus
RTU or Modbus TCP/IP

Control and Error are the
EZRack registers with the
Modbus Master Instruction
status information.

PLC Address is the starting
location in the EZRack PLC
where written or read
information is stored.

Enter how many
consecutive registers or
coils written or read from
the Slave Device.

For Register Communication
select Byte Order

Use the offset to select the
address you will be
communicating to. If you
use offset 5 then the address
that will be read is 300005.

Select the Modbus operation this instruction
will do. The options including Read or Write,
Coils or Registers, One or Many.

For Modbus RTU enter the
Modbus Slaves ID

For Modbus TCP/IP enter the
Modbus Slaves IP Address

180

2. Slave ID
The Network ID number of the Slave Device we are communicating to. This may either
be stored in a Tag or defined as a constant. Not used for TCP/IP.

3. Modbus Command and Modbus Address
Select Modbus command and address to communicate to. You don’t need to enter the
command codes. In addition the Modbus address type is not entered; only the offset
within the address type is entered. For example for holding register 400123, use only
123. The address type is implied by the command.

4. Byte Order
Modbus registers are usually arranged as MSB-LSB. This flag allows you to change the
order if necessary.

5. Data Length
Number of Data Items to process. The data length may either be stored in a Tag or
defined as a constant.

6. EZRack PLC Address
Please enter the Starting EZRack PLC Address where information will be stored or read
from.

7. Control
Enter the EZRack PLC address that will store the state of the execution of the Modbus
Master instruction. Bit 0 (LSB) to Bit 4 of the Control address are used to indicate the
status of the Modbus instruction as follows:

8. Error
Enter the EZRack PLC address that will store the Error codes if there is any error in
execution of the instruction. A zero value (0) indicates no error has occurred. The error
code must be checked only after the instruction is completed (i.e. the power flows out
of instruction). See below for error codes and their descriptions.

Bit Number Status when set

B0 (LSB) Modbus serial Enable

B1 Waiting on reply

B2 Reply processed

B3 Not used

B4 Invalid length for starting address

ERROR CODE Error Description

01 Illegal Function
The function code (command code) in the Modbus
Master command is not understood by the Slave.

02 Illegal Data Address
The Modbus Master command tried to access an
address not available in the Modbus slave device.

03 Illegal Data Value
The Modbus Master Instruction sent a value not
acceptable to the slave.

04 Slave Device Failure
An error occurred in slave device, while the slave was
trying to perform action requested by Modbus Master.

181

9. Timeout
Enter the timeout period in tenth of seconds. EZRack PLC Modbus Instruction will time
out if a slave does not respond to a command within this time.

3.3.12 Data Logging Instructions
Use Data Logging instructions to log tag data to an USB.

Adding the Log Data to File Instruction:
To configure the Log Data to File instruction, perform the following steps:

1. Click on the Log Data to File icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.

05 Timeout
A reply was never received from the slave (the
communication link Between the Master and the Slave
may be disconnected.)

07 Checksum Error Error in check sum of the reply

08 Slave ID Failure
The slave id in the master command message does not
match the slave id Returned in the reply message from
the Slave.

09 Port not open error
The Port on EZRack PLC is not opened for Modbus
Master Instruction

182

3. Double click the instruction to open its dialog box.

4. Select or Add a tag for Data Log Name. This can also be constant.
5. Select whether to append hour, day, and month to Data Log Name. This means that

every new hour, day and month a new .csv file is created.
6. Select of Add a tag for File Size, Event/Enable and Status.
7. Select the Log Type from the drop down. Descriptions are on next page.
8. Enter Log Time Interval for time based data logging and select time base using the drop

down options.
9. Finally select up to 10 tags to data log. Options include data logging the date and time in

the .csv file as well.

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name.
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

183

Log Data to File
When power flows through this instruction,

the Data Log instruction will create and update a csv file on an
inserted USB thumb drive (up to 64GB). The instruction will log the
current value of up to 10 tags in this csv. You can use up to a
maximum of 8 of these instructions.

File Name:
This option allows the user to set the File Name that the .csv is saved under in the USB. The user
can either use an ASCII tag stored at memory location Aaaaa, or they can make this constant.
Further options are to append the hour, day and moth that this data log happens. Appending
these creates new .csv files each time the hour, day and month are different.

Data Log Size:
This is an unsigned 32 bit word stored at memory location Ccccc which will tell you the file size
of the .csv on the USB.

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

N

File Name (Aaaaa)

Data Log Size (Ccccc)

Event/Enable Tag (Ddddd)

Data Log Status (Bbbbb)

Value 2

Value 3

Fffff Eeeee
Ggggg

Value

184

Data Log Type:
There are four types of selectable options for data type:

• On Rising Edge of Event Tag
This options allows for Event Based only data logging. This options looks at the discrete
Event/Enable tag stored at memory location Ddddd and only data logs if this tag goes
from OFF (0) to ON (1).

• On Falling Edge of Event Tag
This options allows for Event Based only data logging. This options looks at the discrete
Event/Enable tag stored at memory location Ddddd and only data logs if this tag goes
from ON (1) to OFF (0).

• On Both Edges of Event Tag
This options allows for Event Based only data logging. This options looks at the discrete
Event/Enable tag stored at memory location Ddddd and only data logs if this tag goes
from ON (1) to OFF (0) or if it goes OFF (1) to ON (1). Combined other two options.

• At Regular Time Intervals (When Enable Tag is High)
This options allows for Time Based only data logging and Event/Time Based combined
data logging. This options looks at the discrete Event/Enable tag stored at memory
location Ddddd and data logs at the specified Log Time-interval if this tag is ON.

o Time Based: To do Time Based only data logging just either turn ON (1) the
Event/Enable tag or set the Event/Enable tag to have an initial value of 1 (ON).

o Event/Time Based: To do Event/Time Based only data logging just use the
Event/Enable tag as the event control. As soon as the Event/Enable tag is ON (1)
the instruction will data log at specified Log Time-interval until this tag is turned
OFF (0).

Log Time-interval
The Data Log instruction will log based on the Log Time-interval if the Log Type is Time Based or
Event/Time Based. Use the time base dropdown to set the units and enter the amount of time
between each data log.

Time Base:
The Time Base is user selectable and allows one of the following time bases:
• Second
• Minute
• Hour

e.g. If Log Time Interval = 15 and Time Base = Second, then the instruction will data log every 15
Seconds. Similarly, if Log Time Interval =11 and Time Base = Hour, then the instruction will data
log every 11 hours.

185

Data Log Status:
The data log will display current status of the instruction in this tag stored at memory location
Bbbbb. More than 1 status can be true at a time so if status is 66 then it is status 2 and 64.
Please see below for the available statuses:

Status
Value

Description Explanation

00
Currently Data Logging
(Normal Operation)

This means the data log instruction is currently writing to
the .csv file.

02 File Open Error Cannot open .csv file. USB drive may not be plugged in.

04 File Write Error
Cannot write to .csv file. USB driver might be full. Or the
.csv file may be read only.

64 Done Data Logging
Have finished writing to the .csv file. Happens if the
instruction no longer has power or when it is data logging
only at set time intervals.

Note: System Discrete SD25 will indicate the status of the USB port. It will be ON (1) if there is an
USB in the port, it will be OFF (0) if there is no USB.

Selected Tags for Data Logging:
The available tags field will have all the currently created discretes and registers for the project.
To add a tag to be data, just select the tag and press the >> button to move it over to the
selected tags. Tag from any location can be data logged. Tags are data logged in columns which
are in the order of top to bottom (left to right). The .csv file can also have a column for PLC Data
and Time if it is selected. If data logging floating point tags the Decimal Places for Floating Point
field will give how many decimals are logged (if 5 selected then number will be #.#####).

Memory Type Syntax (D) Range (dddd)

Discrete

Discrete Outputs O 1-128

Discrete Internals S 1-1024

System Discretes SD 1-16

Register Discretes

Bit Access Registers* R 1-16384 / 0-15
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16
bit registers are allowed) for example for R1 you can access bit 1 using R1/0. See section 3.3.1
for more information.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

186

Note: Memory table for E, F, and G pertains to all 10 tags that can be added to Data Log
Instruction.

Allowed Data Formats: Discrete and all Register data types except BCD.

All examples use the above settings except the Log Type is changed.

Example Time Based:

In this example, Log Type is At Regular Time Intervals (When
Enable Tag is High). The data log will Log at 10 second intervals if
the Enable tag (S1) is ON (1).

Memory Type Syntax (E, F, G) Range (eeee) Range (ffff) Range (gggg)

Discrete

Discrete Inputs I 1-128 1-128 1-128

Discrete Outputs O 1-128 1-128 1-128

Discrete Internals S 1-1024 1-1024 1-1024

System Discretes SD 1-16 1-16 1-16

Bit Access Registers* R 1-16384 / 0-15 1-16384 / 0-15 1-16384 / 0-15

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for example for R1 you can
access bit 1 using R1/0. See section 3.3.1 for more information.

187

Example Event Based:

In this example, Log Type is On Both Edges of Event Tag. The data
log will Log when the state of the Enable tag (S1) is changed (from
ON to OFF or OFF to ON).

Example Both Event and Time Based:

In this example, Log Type is At Regular Time Intervals (When
Enable Tag is High). The data log will Log at 10 second intervals if
the Enable tag (S1) is ON (1). The S2 bit will therefore control the
data log instructions.

188

3.3.13 Datatype Conversion
The instructions listed within this chapter perform datatype conversion operations on user
specified values or addresses.

Adding Datatype Conversion Instructions
To configure all of the various Datatype Conversion instructions, perform the following steps:

1. Click on any Datatype Conversion instruction icon on the right side of the screen.

2. Position the mouse over the Ladder diagram and click the mouse to place the
instruction.

3. To enter Data/Display types, double click the instruction to open its Dialog box.

4. Select or add Source and Destination Tag names/addresses.

5. For Format Conversion select the type of conversion.

6. For X=Y Conversion select if applicable the rounding for floating point and also the ASCII
details.

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag

Details dialogue will appear.
c. Enter the Tag Address in this screen.

189

X=Y Conversion:
When power flows to this element, the

X=Y Conversion instruction converts the register data type of Src
at memory location Aaaaa to Res at memory location Bbbbb and
copies the converted data value to Res at memory location Bbbbb.
If Src has a Floating Point data type it can either be rounded off to
the nearest integer value or truncated when converting to other data types. When the integer
or floating point data value is converted to an ASCII type data value, the number of digits,
decimal position and justification (leading zeros, leading spaces, or trailing spaces) can be
assigned as per user.

Note: This is the same instruction that can also be found in the Math Instruction section. It is also
located here for convenience sake.

Allowed Data Formats: all register data types.

Note: If converting a signed 16 bit (with a negative value -1) to an unsigned 16 bit register the
result will always be zero.

In the example above, variable A, (R500) which is an UNSIGNED_32 (U32) Type, will be
converted to an UNSIGNED_16 Type (U16) and saved in B.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

190

Format Conversion:
When power flows to this element, the

Format Conversion instruction converts the data format of From at
memory location Aaaaa to To at memory location Bbbbb as
follows:

• Binary to BCD
• BCD to Binary
• Binary to Gray Code
• Gray Code to Binary

Both the From and To data types must be a 16 bit Signed Integer, 16 bit Unsigned Integer, or 16
bit BCD for Format Conversion instruction.

Note: This is the same instruction that can also be found in the Math Instruction section. It is also
located here for convenience sake.

Allowed Data Formats: SIGNED_INT_16, UNSIGNED_INT_16, BCD_INT_16

In the example above, R1 which is in Binary format, is converted to Gray Code and saved in R2.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

191

3.3.14 Process Alarms/Faults
The instructions listed within this chapter include all the Alarm/Fault operations that can be
used in the Ladder Logic.

Adding Alarm Instruction
To configure an Alarm Instruction, perform the following steps:

1. Click on the Alarm instruction icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.
3. To enter Data/Display types, double click the instruction to open its Dialog box.

4. Select or Add Registers for the
Input, High High, High, Low, and
Low Low Tags. The limits can be
constant.

5. Select or Add Discretes for the
Alarm tags (High High, High, Low
and Low Low).

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

192

Alarm:
The Alarm instruction can be used to compare

register data values of the Input at memory location Aaaaa with
High High at memory location Bbbbb, High at memory location
Ccccc, Low at memory location Ddddd, and Low Low at memory
location Eeeee.

Note: This is the same instruction that can also be found in the Function Instruction section. It is
also located here for convenience sake.

The instruction will turn ON/OFF discretes based on following conditions:

 If Aaaaa > Bbbbb than the High High Alarm discrete tag at memory location Fffff will turn ON.

 If Aaaaa > Ccccc than the High Alarm discrete tag at memory location Ggggg will turn ON.

 If Aaaaa < Ddddd than the Low Alarm discrete tag at memory location Hhhhh will turn ON.

 If Aaaaa < Eeeee than the Low Low Alarm discrete tag at memory location Iiiii will turn ON.

Note: Only if Ccccc < Aaaaa < Ddddd then no discretes will be ON. Also when Low Low Alarm is
ON the Low Alarm will also be ON. Similarly if High High Alarm is ON the High Alarm will also be
ON.

Aaaaa
TAG 1

Input Tag (Aaaaa)

High High Limit (Bbbbb)

High Limit (Ccccc)

Low Limit (Ddddd)

Low Low Limit (Eeeee)

High High Alarm (Fffff)

High Alarm (Ggggg)

Low Alarm (Hhhhh)

Low Low Alarm (Iiiii)

193

Any of the registers (Low Low, Low, High, or High High) can be assigned a constant value. Values
can be displayed in Decimal, Hex, or Octal format. All the registers must be of the same data
type.

Allowed Data Formats: Discrete and all Register data types except BCD and ASCII.

In this example based on Input (R1) the Normal Open Contacts will
turn ON/OFF and execute their logic. For example a pump and drain
could be controlled and Input would be water level.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

Memory Type Syntax (D, E) Range (dddd) Range (eeee)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Memory Type Syntax (F, G, H, I) Range (ffff) Range (gggg) Range (hhhh) Range (iiii)

Discrete

Discrete Outputs O 1-128 1-128 1-128 1-128

Discrete Internals S 1-1024 1-1024 1-1024 1-1024

System Discretes SD 1-16 1-16 1-16 1-16

Register Discretes

Bit Access Registers* R 1-16384 / 0-15 1-16384 / 0-15 1-16384 / 0-15 1-16384 / 0-15

194

Adding User Defined Fault Instruction

To configure a User Defined Fault Instruction, perform the following steps:

1. Click on the User Defined Fault instruction icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.
3. To enter Data/Display types, double click the instruction to open its Dialog box.

4. Select or Add a Register for Fault Code
Tag.

5. Select or Add Discretes for the Fault
Fount, and Reset Tag.

6. Use the Add Fault button to add up to 8
faults.

7. For each fault Select or Add an Input 1
Register. Then select the condition from
the dropdown. Finally either Select or Add
an Input 2 Register (this can also be
constant).

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

195

User Defined Faults:
When power flows to the User Defined Fault

instruction than it will look at all the user defined conditions and if
they are true it will turn ON fault tag at memory location Bbbbb.
Also it will indicate the condition which caused the fault in the
fault code tag at memory location Aaaaa. This instruction can compare up to 8 conditions and
indicates the fault condition by turning ON the corresponding bit to the condition e.g. condition
1 is indicated by bit 0 (register value 1), condition 5 is indicated by bit 4 (register value 16). Use
the Reset Fault Tag at memory location Ccccc.

Note: This is the same instruction that can also be found in the Function Instruction section. It is
also located here for convenience sake.

Note: If multiple conditions are true then the
fault code tag will indicate this with multiple
bits being ON e.g. condition 1 & 5 than fault
code tag will equal 17 (1+16).

The User Defined Fault instruction will not
reset the Fault Code and Fault tag unless the
Reset tag turns true. Even if the fault
condition is not true anymore, Fault Code and
Fault tag will retain the information about the
last fault condition seen.

Note: Memory table for D and E pertains to all 16 tags that can be added for Fault Inputs.

Memory Type Syntax (B, C) Range (bbbb) Range (cccc)

Discrete

Discrete Outputs O 1-128 1-128

Discrete Internals S 1-1024 1-1024

System Discretes SD 1-16 1-16

Register Discretes

Bit Access Registers* R 1-16384 / 0-15 1-16384 / 0-15
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed)

for example for R1 you can access bit 1 using R1/0. See section 3.3.1 for more information.

Aaaaa
TAG 1

Bbbbb
TAG 2 Ccccc

TAG 3

N

Fault Code (Aaaaa)

Fault Discrete (Bbbbb)

Fault Discrete (Ccccc)

Tag (Ddddd) Tag 2 (Eeeee)

196

Allowed Data Formats: Discrete and all Register data types except BCD and ASCII.

In this example, when the temperature is
greater than 60 the Fault Discrete will turn
ON (1) and the Fault Code will be 1 (since
fault 1). Therefore the logic below will
execute and the Fan (O1) will turn ON (1).
Also it will try to reset the fault but that will
only work if the Temperature goes below
60.

Memory Type Syntax (A, D, E) Range (aaaa) Range (dddd) Range (eeee)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

197

3.3.15 Analog
The instructions listed within this chapter perform analog increases or decreases on user
specified values or addresses.

Adding Analog Instructions

To configure all of the various Analog instructions, perform the following steps:

1. Click on any Analog instruction icon on the right side of the screen.

2. Position the mouse over the Ladder diagram and click the mouse to place the
instruction.

3. To enter Data/Display types, double click the instruction to open its Dialog box.

4. Select or Add the needed Register tags for the different instructions. Noting that all tags
need to be of the same datatype. Note: Ramp Generator will automatically generate
three reserved tags starting from the Output tag memory location.

5. For the Ramp Generator also add a Discrete Overflow tag.

6. For Scale Non-Linear please use the Add point to select or add up to 10 reference points
total.

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag

Details dialogue will appear.
c. Enter the Tag Address in this screen.

198

Ramp Generator:
When power flows to the Ramp Generator

it will increment the output at memory location Eeeee at a set
rate based on the rate count at memory location Ccccc and rate
time at memory location Ddddd. If the ramp generator reaches
either the maximum or minimum as indicate at memory locations Aaaaa and Bbbbb, than the
overflow tag at memory location Iiiii will turn ON. The values for maximum, minimum, rate
count, and rate time can be constant. The Rate time is based on the selected time base.

Note: This is the same instruction that can also be found in the Function Instruction section. It is
also located here for convenience sake.

Note: The ramp generator can increment both in the upward and in the downward direction. To
decrement please use a negative value for the rate count.

Note: This instruction needs to use three extra registers for internal calculations. Therefore it will
auto generate the needed register starting from the memory address of the output Eeeee (Fffff=
E(eeee+1), Ggggg = E(eeee+2), Hhhhh = E(eeee+3)). If double words (INT_32) used then
addresses are +2.

Eeeee
TAG 5

Iiiii
TAG 9

Ccccc
TAG 3

Ddddd
TAG 4

Maximum (Aaaaa)

Minimum (Bbbbb)

Ramp Rate (Ccccc)

Ramp Time (Ddddd)

Output (Eeeee)

Fffff

Ggggg

Hhhhh

Ramp Overflow (Iiiii)

199

Time Base:
Time Base allows the time variable to be mapped to different Time Bases as follows:
• 1 millisecond
• 10 millisecond
• 100 millisecond
• 1 second

Allowed Data Formats: Discrete and all Register data types except BCD and ASCII.

In this example when S2 is ON (1), the ramp generator will increment R5 by the amount in R3
every time in R4 milliseconds.

Memory Type Syntax (A, B, C, D) Range (aaaa) Range (bbbb) Range (cccc) Range (dddd)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20 1-20

Memory Type Syntax (E, F, G, H) Range (eeee) Range (ffff) Range (gggg) Range (hhhh)

Registers

Registers Internals R 1-16384 1-16384 1-16384 1-16384

Memory Type Syntax (I) Range (iiii)

Discrete

Discrete Outputs O 1-128

Discrete Internals S 1-1024

System Discretes SD 1-16

Register Discretes

Bit Access Registers* R 1-16384 / 0-15
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16
bit registers are allowed) for example for R1 you can access bit 1 using R1/0. See section 3.3.1
for more information.

200

Scale (Linear):
When power flows to the Scale (Linear)

Instruction it will scale the input at memory location Aaaaa to the
output at memory location Ddddd. The scaling factor is determined
by Point 1 and Point 2 inputs and outputs at memory locations
Bbbbb, Ccccc, Eeeee, and Fffff. The values for Inputs and Outputs of Point 1 and Point 2 can be
constant. Power will stop flowing through this element if try to divide by zero. The equation for
scaling is equal to:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡 × (
𝑃𝑜𝑖𝑛𝑡 2 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑃𝑜𝑖𝑛𝑡 1 𝑂𝑢𝑡𝑝𝑢𝑡

𝑃𝑜𝑖𝑛𝑡 2 𝐼𝑛𝑝𝑢𝑡 − 𝑃𝑜𝑖𝑛𝑡 1 𝐼𝑛𝑝𝑢𝑡
) − 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where the constant is determined by solving equation for point 1 and point 2.

Note: This is the same instruction that can also be found in the Function Instruction section. It is
also located here for convenience sake.

Ddddd
TAG 4

Aaaaa
TAG 1

Input (Aaaaa)

Point 1 Input (Bbbbb)

Point 2 Input (Ccccc)

Point 1 Output (Eeeee)

Point 2 Output (Fffff)

Output (Ddddd)

201

Allowed Data Formats: All Register data types except BCD and ASCII.

Example:
Point 1: Input Value= 1000, Output Value = 0
Point 2: Input Value= 4000, Output Value = 100

Equation:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡 × (
100 − 0

4000 − 1000
) −

1000

30

𝑂𝑢𝑡𝑝𝑢𝑡 =
𝐼𝑛𝑝𝑢𝑡

30
−

1000

30

Result: If Input Value = 3000, Output Value = 67

In this example, the value of the input tag R1 is scaled
by the settings stored in the output tag R7.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

Memory Type Syntax (D, E, F) Range (dddd) Range (eeee) Range (ffff)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

202

Scale (Non-Linear):
When power flows to the Scale (Non-

Linear) Instruction it will scale the input at memory location Aaaaa
to the output at memory location Bbbbb. The instructions uses up
to 10 reference points with corresponding input and output value.
The input is scaled linearly between every to reference points. The
overall result is a non-linear approximation through multiple linear approximations. All linear
approximation behave like the Scale (Linear) Instruction. Reference points can be taken from
multiple memory locations or can be constant. Power will stop flowing through this element if
try to divide by zero.

Note: This is the same instruction that can also be found in the Function Instruction section. It is
also located here for convenience sake.

Use the Add point button to add
points. At least 2 points with
both Input and Output are
needed. With only 2 points the
instruction will be a simple
linear scale.

The equation for each line
between points is the same as
the equation used for Scale
(Linear).

Note: All points have to be
greater than the points before
them, example:

Point 2 Input > Point 1 Input

Point 2 Output > Point 1 Output

Bbbbb
TAG 2

Aaaaa
TAG 1

N

Input (Aaaaa)

Output (Bbbbb)

Point 1 In (Ccccc) Point 1 Out (Ddddd)

Point 2 In (Eeeee) Point 2 Out (Fffff)

203

Note:
Memory table for C, D, E, and F pertains to all 10 points (inputs and outputs).

Allowed Data Formats: All Register data types except BCD and ASCII.

This graph illustrates
the difference
between Scale
(Linear) and Scale
(Non-Linear). The red
line shows the actual
conditions that you
would like to scale
sensor information
to. For example the
volume of an
asymmetrical tank. If
the sensor data were
to be scaled using

just Scale (Linear) you would have the green line with its large error in some places. On the
other hand using the Scale (Non-Linear) the actual result can be approximated as seen by the
yellow line.

In this example, the value of the input tag R1 is scaled
by the settings stored in the output tag R7.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Memory Type Syntax (C, D, E, F) Range (cccc) Range (dddd) Range (eeee) Range (ffff)

Registers

Input Registers IR 1-64 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20 1-20

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40

Actual Results Linear Scale Non-Linear

204

3.3.16 Function Blocks
The instructions listed within this chapter perform advanced functions with multiple tag inputs
and outputs.

Adding Function Block Instructions

To configure all of the various Function Block instructions, perform the following steps:

1. Click on any Function Block instruction icon on the right side of the screen.

2. Position the mouse over the Ladder diagram and click the mouse to place the
instruction.

3. To enter Data/Display types, double click the instruction to open its Dialog box.

4. Select or Add the needed Register tags for the different instructions. Noting that all tags
need to be of the same datatype. Note: Instructions are very different. Some need many
tags others need a few.

5. Most instructions also exist in other locations please see Sections 3.3.3, 3.3.4, 3.3.9,
3.3.13 and 3.3.14.

6. Instructions Change of Value, Find Min & Max Value, Flasher and Ramp Generator will
generate extra internal calculation tags.

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name
b. Now either press enter or right click on the Tag Name and the Add New Tag

Details dialogue will appear.
c. Enter the Tag Address in this screen.

205

Alarm:
The Alarm instruction can be used to compare

register data values of the Input at memory location Aaaaa with
High High at memory location Bbbbb, High at memory location
Ccccc, Low at memory location Ddddd, and Low Low at memory
location Eeeee.

 Note: This is the same instruction that can also be found in the Process Alarms/Faults Instruction
section. It is also located here for convenience sake.

The instruction will turn ON/OFF discretes based on following conditions:

 If Aaaaa > Bbbbb than the High High Alarm discrete tag at memory location Fffff will turn ON.

 If Aaaaa > Ccccc than the High Alarm discrete tag at memory location Ggggg will turn ON.

 If Aaaaa < Ddddd than the Low Alarm discrete tag at memory location Hhhhh will turn ON.

 If Aaaaa < Eeeee than the Low Low Alarm discrete tag at memory location Iiiii will turn ON.

Note: Only if Ccccc < Aaaaa < Ddddd then no discretes will be ON. Also when Low Low Alarm is
ON the Low Alarm will also be ON. Similarly if High High Alarm is ON the High Alarm will also be
ON.

Aaaaa
TAG 1

Input Tag (Aaaaa)

High High Limit (Bbbbb)

High Limit (Ccccc)

Low Limit (Ddddd)

Low Low Limit (Eeeee)

High High Alarm (Fffff)

High Alarm (Ggggg)

Low Alarm (Hhhhh)

Low Low Alarm (Iiiii)

206

Any of the registers (Low Low, Low, High, or High High) can be assigned a constant value. Values
can be displayed in Decimal, Hex, or Octal format. All the registers must be of the same data
type.

Allowed Data Formats: Discrete and all Register data types except BCD and ASCII.

In this example based on Input (R1) the Normal Open Contacts will
turn ON/OFF and execute their logic. For example a pump and drain
could be controlled and Input would be water level.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

Memory Type Syntax (D, E) Range (dddd) Range (eeee)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Memory Type Syntax (F, G, H, I) Range (ffff) Range (gggg) Range (hhhh) Range (iiii)

Discrete

Discrete Outputs O 1-128 1-128 1-128 1-128

Discrete Internals S 1-1024 1-1024 1-1024 1-1024

System Discretes SD 1-16 1-16 1-16 1-16

Register Discretes

Bit Access Registers* R 1-16384 / 0-15 1-16384 / 0-15 1-16384 / 0-15 1-16384 / 0-15
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for example for R1 you can
access bit 1 using R1/0. See section 3.3.1 for more information.

207

Change of Value:
The Change of Value instruction can be

used to find the change of an Input at memory location Aaaaa
during a set amount of time. When power flows to this instruction
then it will output the change in the register value of the Input
after a selected time interval. The time interval is the sample rate at memory location Fffff, or it
can be constant. The time interval is set using the Time Base. The change of value will output to
register at memory address Ggggg. When power flow is off then output register value will be 0.
Power will always flow through this element. Input and Output registers have to be of the same
type.

Note: For internal calculations this
instruction will automatically
generate four extra registers where
each register memory address is 1
greater than previous register (e.g.
Bbbbb = Aaaaa + 1). If double word
(INT_32) used then memory
addresses generate will be +2.

Time Base:
Time Base allows the time variable to be mapped to different Time Bases as follows:
• 1 millisecond
• 10 millisecond
• 100 millisecond
• 1 second

Aaaaa
TAG 1

Fffff
TAG 6

Ggggg
TAG 7

Input Tag (Aaaaa)

Bbbbb

Sample Rate (Fffff)

Ccccc

Ddddd

Eeeee

Output Tag (Ggggg)

208

Allowed Data Formats: All Register data types except BCD and ASCII.

In this example, the when the input tag R1
changes, the amount of change per sample rate
R6 will be outputted to R7.

Memory Type Syntax (A, B, C, D) Range (aaaa) Range (bbbb) Range (cccc) Range (dddd)

Registers

Registers Internals R 1-16384 1-16384 1-16384 1-16384

Memory Type Syntax (E, F, G) Range (eeee) Range (ffff) Range (gggg)

Registers

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20

209

Compare Values:
The Compare Values instruction can be

used to compare two Inputs, Input 1 at memory location Aaaaa
and Input 2 at memory location Bbbbb. Based on the Input 1
and Input 2 comparison the corresponding discrete tag (Ccccc,
Ddddd, or Eeeee) will turn on. This instruction examines
whether Input 1 and Input 2 are greater than, equal, or less than. Either Input can be assigned a
constant value. Values can be displayed in Decimal, Hex, or Octal format. All the registers must
be of the same data type. Power constantly flow through this element.

Note: This is the same instruction that can also be found in the Compare Instruction section. It is
also located here for convenience sake.

Allowed Data Formats: Discrete, all register data type except BCD and ASCII.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Memory Type Syntax (C,D, E) Range (cccc) Range(dddd) Range(eeee)

Discrete

Discrete Outputs O 1-128 1-128 1-128

Discrete Internals S 1-1024 1-1024 1-1024

Register Discretes

Bit Access Registers* R 1-16384 / 0-15 1-16384 / 0-15 1-16384 / 0-15
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for example for R1 you can
access bit 1 using R1/0. See section 3.3.1 for more information.

Aaaaa
TAG 1

Bbbbb
TAG 2

TAG 1 (Aaaaa)

TAG 2 (Bbbbb)

TAG 3 (Ccccc)

TAG 4 (Ddddd)

TAG 5 (Eeeee)

210

In this example:

 If R1 > R2 then S1 will be ON and O12 will be energized.

 If R1 = R2 then S2 will be ON and O11 will be energized.

 If R1 < R2 then S3 will be ON and O10 will be energized.

211

Find Min & Max Value:
The Find Min & Max instruction looks at the

Input Value at memory location Aaaaa and records the largest and
smallest number reached by the Input. When power flows then it
will always compare max value at memory location Eeeee, min
value at memory location Ddddd, and current value at memory
location Aaaaa. If current value is greater than max value, the current value will become the
new max value. Also if current value is less than min value, the current value will become the
new min value. The reset register at memory location Ccccc, will reset the min/max values to

zero if there is no power flow or to current
value if there is power flow. Please see
condition table for more information. All
registers have to be of the same data type.
Power will always flow through this element.

Note: For internal calculations instruction will
automatically generate one extra register
where Bbbbb = (Aaaaa + 1).

Note: Instruction only functions as described in
description when Power ON and Reset OFF.

Condition table

Power Flow Reset Tag Min Value Max Value

Power ON Reset OFF
Min Value

(Instruction Functions)
Max Value

(Instruction Functions)

Power ON Reset ON Current Value Current Value

Power OFF Reset ON 0 0

Power OFF Reset OFF
Last recorded Min from

when power ON
Last recorded Max from

when power ON

Aaaaa
TAG 1

Ddddd
TAG 4

Ccccc
TAG 3

Eeeee
TAG 5

Input Tag (Aaaaa)

Reset (Ccccc)

Min Tag (Ddddd)

Max Tag (Eeeee)

Bbbbb

212

Allowed Data Formats: Discrete, all register data type except BCD and ASCII.

In this example, the outputs R2 and R3 will have the
highest and lowest value the input tag R1 has reached
since this instruction was last reset.

Memory Type Syntax (A, B, D, E) Range (aaaa) Range (bbbb) Range (dddd) Range (eeee)

Registers

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20

Memory Type Syntax (C) Range (cccc)

Discrete

Discrete Outputs O 1-128

Discrete Internals S 1-1024

Register Discretes

Bit Access Registers* R 1-16384 / 0-15
*Bit level access to registers is possible. You will be accessing bits of certain
register (only 16 bit registers are allowed) for example for R1 you can access bit
1 using R1/0. See section 3.3.1 for more information.

213

Flasher:
The flasher will turn ON/OFF a specified

Output discrete at memory location Eeeee. When power flows to
this instruction then the Output discrete will be ON for time value
from flash rate register at memory location Ccccc and then OFF
for the same time.

Note: For internal calculations this
instruction will automatically generate
two extra registers where each register
memory address is 1 greater than
previous register (e.g. Bbbbb = Aaaaa +
1).

Time Base:
Time Base allows the time variable to be mapped to different Time Bases as follows:
• 1 millisecond
• 10 millisecond
• 100 millisecond
• 1 second

Allowed Data Formats: Discrete, all register data type except BCD and ASCII.

Memory Type Syntax (A, B, C, D) Range (aaaa) Range (bbbb) Range (cccc) Range (dddd)

Registers

Output Registers OR 1-64

Registers Internals R 1-16384 1-16384 1-16384 1-16384

System Registers SR 1-20

Aaaaa
TAG 1

Ddddd
TAG 4

Eeeee
TAG 5

Base Tag (Aaaaa)

Sample Rate (Ddddd)

Output (Eeeee)

Bbbbb

Ccccc

214

Allowed Data Formats: Discrete and UNSIGNED_INT_16

In this example, the output S1 is ON for the sample
rate R6 milliseconds and then OFF for the same
amount of time. The base tag R1 is used for internal
calculations, please do not use for anything else.

Memory Type Syntax (E) Range (eeee)

Discrete

Discrete Outputs O 1-128

Discrete Internals S 1-1024

Register Discretes

Bit Access Registers* R 1-16384 / 0-15
*Bit level access to registers is possible. You will be accessing bits of certain
register (only 16 bit registers are allowed) for example for R1 you can access bit
1 using R1/0. See section 3.3.1 for more information.

215

Limit:
The Limit instruction can be used to

compare register data values of the Input at memory location
Aaaaa with Low at memory location Bbbbb and High at
memory location Ccccc. If Aaaa ≤ Ccccc and Aaaaa ≥ Bbbbb
then power will flow through this element. Any of the registers (Input, High or Low) can be
assigned a constant value. Values can be displayed in Decimal, Hex, or Octal format. All the
registers must be of the same data type.

Note: This is the same instruction that can also be found in the Compare Instruction section. It is
also located here for convenience sake.

Allowed Data Formats: all register data type except BCD and ASCII.

In the example above, if the input R1 is within R2 and R3, power will flow out and O9 will be
energized.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

216

Ramp Generator:
When power flows to the Ramp Generator

it will increment the output at memory location Eeeee at a set
rate based on the rate count at memory location Ccccc and rate
time at memory location Ddddd. If the ramp generator reaches
either the maximum or minimum as indicate at memory locations Aaaaa and Bbbbb, than the
overflow tag at memory location Iiiii will turn ON. The values for maximum, minimum, rate
count, and rate time can be constant. The Rate time is based on the selected time base.

Note: This is the same instruction that can also be found in the Analog Instruction section. It is
also located here for convenience sake.

Note: The ramp generator can increment both in the upward and in the downward direction. To
decrement please use a negative value for the rate count.

Note: This instruction needs to use three extra registers for internal calculations. Therefore it will
auto generate the needed register starting from the memory address of the output Eeeee (Fffff=
E(eeee+1), Ggggg = E(eeee+2), Hhhhh = E(eeee+3)). If double words (INT_32) used then
addresses are +2.

Eeeee
TAG 5

Iiiii
TAG 9

Ccccc
TAG 3

Ddddd
TAG 4

Maximum (Aaaaa)

Minimum (Bbbbb)

Ramp Rate (Ccccc)

Ramp Time (Ddddd)

Output (Eeeee)

Fffff

Ggggg

Hhhhh

Ramp Overflow (Iiiii)

217

Time Base:
Time Base allows the time variable to be mapped to different Time Bases as follows:
• 1 millisecond
• 10 millisecond
• 100 millisecond
• 1 second

Allowed Data Formats: Discrete and all Register data types except BCD and ASCII.

In this example when S2 is ON (1), the ramp generator will increment R5 by the amount in R3
every time in R4 milliseconds.

Memory Type Syntax (A, B, C, D) Range (aaaa) Range (bbbb) Range (cccc) Range (dddd)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20 1-20

Memory Type Syntax (E, F, G, H) Range (eeee) Range (ffff) Range (gggg) Range (hhhh)

Registers

Registers Internals R 1-16384 1-16384 1-16384 1-16384

Memory Type Syntax (I) Range (iiii)

Discrete

Discrete Outputs O 1-128

Discrete Internals S 1-1024

System Discretes SD 1-16

Register Discretes

Bit Access Registers* R 1-16384 / 0-15
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16
bit registers are allowed) for example for R1 you can access bit 1 using R1/0. See section 3.3.1
for more information.

218

Scale (Linear):
When power flows to the Scale (Linear)

Instruction it will scale the input at memory location Aaaaa to the
output at memory location Ddddd. The scaling factor is determined
by Point 1 and Point 2 inputs and outputs at memory locations
Bbbbb, Ccccc, Eeeee, and Fffff. The values for Inputs and Outputs of Point 1 and Point 2 can be
constant. Power will stop flowing through this element if try to divide by zero. The equation for
scaling is equal to:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡 × (
𝑃𝑜𝑖𝑛𝑡 2 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑃𝑜𝑖𝑛𝑡 1 𝑂𝑢𝑡𝑝𝑢𝑡

𝑃𝑜𝑖𝑛𝑡 2 𝐼𝑛𝑝𝑢𝑡 − 𝑃𝑜𝑖𝑛𝑡 1 𝐼𝑛𝑝𝑢𝑡
) − 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where the constant is determined by solving equation for point 1 and point 2.

Note: This is the same instruction that can also be found in the Analog Instruction section. It is
also located here for convenience sake.

Ddddd
TAG 4

Aaaaa
TAG 1

Input (Aaaaa)

Point 1 Input (Bbbbb)

Point 2 Input (Ccccc)

Point 1 Output (Eeeee)

Point 2 Output (Fffff)

Output (Ddddd)

219

Allowed Data Formats: All Register data types except BCD and ASCII.

Example:
Point 1: Input Value= 1000, Output Value = 0
Point 2: Input Value= 4000, Output Value = 100

Equation:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡 × (
100 − 0

4000 − 1000
) −

1000

30

𝑂𝑢𝑡𝑝𝑢𝑡 =
𝐼𝑛𝑝𝑢𝑡

30
−

1000

30

Result: If Input Value = 3000, Output Value = 67

In this example, the value of the input tag R1 is scaled
by the settings stored in the output tag R7.

Memory Type Syntax (A, B, C) Range (aaaa) Range (bbbb) Range (cccc)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

Memory Type Syntax (D, E, F) Range (dddd) Range (eeee) Range (ffff)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

220

Scale (Non-Linear):
When power flows to the Scale (Non-

Linear) Instruction it will scale the input at memory location Aaaaa
to the output at memory location Bbbbb. The instructions uses up
to 10 reference points with corresponding input and output value.
The input is scaled linearly between every to reference points. The
overall result is a non-linear approximation through multiple linear approximations. All linear
approximation behave like the Scale (Linear) Instruction. Reference points can be taken from
multiple memory locations or can be constant. Power will stop flowing through this element if
try to divide by zero.

Note: This is the same instruction that can also be found in the Analog Instruction section. It is
also located here for convenience sake.

Use the Add point button to add
points. At least 2 points with
both Input and Output are
needed. With only 2 points the
instruction will be a simple
linear scale.

The equation for each line
between points is the same as
the equation used for Scale
(Linear).

Note: All points have to be
greater than the points before
them, example:

Point 2 Input > Point 1 Input

Point 2 Output > Point 1 Output

Bbbbb
TAG 2

Aaaaa
TAG 1

N

Input (Aaaaa)

Output (Bbbbb)

Point 1 In (Ccccc) Point 1 Out (Ddddd)

Point 2 In (Eeeee) Point 2 Out (Fffff)

221

Note:
Memory table for C, D, E, and F pertains to all 10 points (inputs and outputs).

Allowed Data Formats: All Register data types except BCD and ASCII.

This graph illustrates
the difference
between Scale
(Linear) and Scale
(Non-Linear). The red
line shows the actual
conditions that you
would like to scale
sensor information
to. For example the
volume of an
asymmetrical tank. If
the sensor data were
to be scaled using

just Scale (Linear) you would have the green line with its large error in some places. On the
other hand using the Scale (Non-Linear) the actual result can be approximated as seen by the
yellow line.

In this example, the value of the input tag R1 is scaled
by the settings stored in the output tag R7.

Memory Type Syntax (A, B) Range (aaaa) Range (bbbb)

Registers

Input Registers IR 1-64 1-64

Output Registers OR 1-64 1-64

Registers Internals R 1-16384 1-16384

System Registers SR 1-20 1-20

Memory Type Syntax (C, D, E, F) Range (cccc) Range (dddd) Range (eeee) Range (ffff)

Registers

Input Registers IR 1-64 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20 1-20

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40

Actual Results Linear Scale Non-Linear

222

String Pack:
When power flows through this element,

the String Pack takes any register type and combines them into
an ASCII string. The resulting ASCII string is stored at memory
location Aaaaa. The instruction takes up to 16 different inputs
from multiple different memory locations. Any input can also be a constant.

Note: This is the same instruction that can also be found in the String Instruction section. It is
also located here for convenience sake.

For each input the string length to pack needs to be specified. If an input has a floating point
data type it can either be rounded off to the nearest integer value or truncated. When an input
of integer or floating point data value is converted, the number of digits, decimal position and
justification (leading zeros, leading spaces, or trailing spaces) must be assigned. Power will stop
flowing through this element if an error occurs such as overflow, underflow, or divide by zero.

The String Pack instruction will only combine the inputted length specified for each input
element even if the input’s size is greater e.g. if length specified is 10 but ASCII string is 12 long
will only pack the first 10 characters of the ASCII String.

Note: For signed registers and registers with decimals please note that the length to pack needs to be one greater
than the number of digits due to the need for a +/- sign and or decimal point. If number has both then the length to
pack needs to be 2 greater than the number of digits.

Note: For Floating point registers be mindful of the scientific notation. Based on the numeric value of the register the
number can be displayed in decimal notation (##.##) or scientific notation (#.##e+##). For scientific notation the length
to pack needs to be four greater than the number of digits.

Allowed Data Formats: all register data types.

Memory Type Syntax (A, Inputs) Range (aaaa) Inputs

Registers

Output Registers OR 1-64

Registers Internals R 1-16384 1-16384

Aaaaa
TAG 1

N

223

In this example, string R100, register R20,
and string R120 are packed together into
R300 when power flows. For this example it
would create string “Current Temperature is
20°C”. With string R100 being 23 Char long
(“Current Temperature is “). The register
R20 would be the temperature with length 2
and Number of digits 2 as well (“20”). Finally
string R120 would be 2 char long (“°C”).

In this example, string R100, and register
R20 are packed together into R300 when
power flows. For this example it would
create string “Current calculated value is
2.45e+03”. With string R100 being 28 Char
long (“Current calculated value is “). The
register R20 would be the value with length
8 (“2.45e+03”), Number of digits 3 (“2.45”),
and Decimal Position is 2 (“.45”).

224

String Unpack:
When power flows through this element,

the String Unpack takes an ASCII String and splits it into different
registers of any type. The Input ASCII string is stored at memory
location Aaaaa. The instruction outputs to up to 16 different
outputs from multiple different memory locations. For each output the string length to unpack
needs to be specified. Power will stop flowing through this element if an error occurs such as
overflow, underflow, or divide by zero.

Note: This is the same instruction that can also be found in the String Instruction section. It is also located
here for convenience sake.

The instruction will split the ASCII string starting from the beginning into the different registers
per the specified length. Therefore if the length of the Input String is shorter than the total
length of the outputs, only the outputs up to the Input String length will be split into.

Note: An ASCII register takes 2 char per register address, e.g. for 10 char need R1-R5. Only the first address needs to be
specified, the others are automatically used.

Note: An ASCII character cannot be split into a non-ASCII register. Therefore if such is attempted the output register
will be set to 0, e.g. if try to input AB into UNSIGNED_INT_16 this will result in the register being 0.

Note: For Floating point registers be mindful of the scientific notation. Floating point values can be displayed in
decimal notation (##.##) or scientific notation (#.##e+##). For scientific notation the length to unpack needs to be four
greater than the number of digits.

Allowed Data Formats: all register data types.

Examples of how it will unpack different length strings:
Example 1:
Input: ABCDEF
If splitting into Output 1 (Length 10) and Output 2 (Length 10).
Then only Output 1 will be used since Input length < Output 1 length.
Output 1: ABDCEF____
Output 2: __________
Example 2:
Input: ABCDEFGHIJK
If splitting into Output 1 (Length 10) and Output 2 (Length 10).

Memory Type Syntax (A, Outputs) Range (aaaa) Outputs

Registers

Output Registers OR 1-64

Registers Internals R 1-16384 1-16384

Aaaaa
TAG 1

N

225

Then both Output 1 and Output 2 will be used but since Input length < (Output 1 + Output 2)
length, then only some of Output 2 will be used.
Output 1: ABDCEFGHIJ
Output 2: K_________

In this example, R300 is unpacked into string
R100, register R20, and string R120 when
power flows. For this example it would take
apart string “Current Temperature is 20°C”.
With string R100 being 23 Char long
(“Current Temperature is “). The register R20
would be the temperature with length 2
(“20”). Finally string R120 would be 2 char long (“°C”).

In this example, R300 is unpacked into string
R100 and register R20 when power flows.
For this example it would take apart string
“Current calculated value is 2.45e+03”. With
string R100 being 28 Char long (“Current
calculated value is “). The register R20 would
be the value with length 8 (“2.45e+03”).

226

User Defined Faults:
When power flows to the User Defined Fault

instruction than it will look at all the user defined conditions and if
they are true it will turn ON fault tag at memory location Bbbbb.
Also it will indicate the condition which caused the fault in the
fault code tag at memory location Aaaaa. This instruction can compare up to 8 conditions and
indicates the fault condition by turning ON the corresponding bit to the condition e.g. condition
1 is indicated by bit 0 (register value 1), condition 5 is indicated by bit 4 (register value 16). Use
the Reset Fault Tag at memory location Ccccc.

Note: This is the same instruction that can also be found in the Process Alarms/Faults Instruction
section. It is also located here for convenience sake.

Note: If multiple conditions are true then the
fault code tag will indicate this with multiple
bits being ON e.g. condition 1 & 5 than fault
code tag will equal 17 (1+16).

The User Defined Fault instruction will not
reset the Fault Code and Fault tag unless the
Reset tag turns true. Even if the fault
condition is not true anymore, Fault Code and
Fault tag will retain the information about the
last fault condition seen.

Note: Memory table for D and E pertains to all 16 tags that can be added for Fault Inputs.

Memory Type Syntax (B, C) Range (bbbb) Range (cccc)

Discrete

Discrete Outputs O 1-128 1-128

Discrete Internals S 1-1024 1-1024

System Discretes SD 1-16 1-16

Register Discretes

Bit Access Registers* R 1-16384 / 0-15 1-16384 / 0-15
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed)

for example for R1 you can access bit 1 using R1/0. See section 3.3.1 for more information.

Aaaaa
TAG 1

Bbbbb
TAG 2 Ccccc

TAG 3

N

Fault Code (Aaaaa)

Fault Discrete (Bbbbb)

Fault Discrete (Ccccc)

Tag (Ddddd) Tag 2 (Eeeee)

227

Allowed Data Formats: Discrete and all Register data types except BCD and ASCII.

In this example, when the temperature is
greater than 60 the Fault Discrete will turn
ON (1) and the Fault Code will be 1 (since
fault 1). Therefore the logic below will
execute and the Fan (O1) will turn ON (1).
Also it will try to reset the fault but that will
only work if the Temperature goes below
60.

Memory Type Syntax (A, D, E) Range (aaaa) Range (dddd) Range (eeee)

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20

228

3.3.17 IIoT
Use the IIoT (MQTT) Publish to send data to an IIoT (MQTT) Broker. The IIoT (MQTT) Publish
allows you to publish data for the Industrial Internet of Things (IIoT). For more information
about IIoT and how it works please see Chapter 8.

Adding the Log IIoT (MQTT) Publish Instruction:
To configure the IIoT (MQTT) Publish instruction, perform the following steps:

1. Click on the IIoT (MQTT) Publish icon on the right side of the screen.
2. Position the mouse over the Ladder diagram and click the mouse to place the

instruction.
3. Double click the instruction to
open its dialog box.

4. Select a topic from the
dropdown. If you would like to
create a topic use the MQTT
Setup to create topics and
configure your MQTT Broker.
Please see Section 2.5.8 and
Chapter 8 for more information.

5. Select of Add a tag for
Event/Enable and Status.

6. Select the Publish Type from the drop down. Descriptions are on next page.
7. Enter Publish Time Interval for time based data publishing and select time base using

the drop down options.
8. Finally select up to 10 tags to publish. Each tag will be published as its own separate

topic with the previously selected topic put in front (example from above Topic/Motor).

Adding tags:

a. If need be you can add a new tag by entering a new Tag Name.
b. Now either press enter or right click on the Tag Name and the Add New Tag Details

dialogue will appear.
c. Enter the Tag Address in this screen.

229

 IIoT (MQTT) Publish
When power flows through this instruction, the

IIoT (MQTT) Publish instruction will send the current value of up to
10 tags to an MQTT Broker. For more information on how IIoT
works and how to setup your broker please see Chapter 8. You can
use up to a maximum of 8 of these instructions.

Topic (MQTT Setup)
Please use the MQTT Setup to configure your broker and add topics. For more information on
how to do this please see Section 2.5.8 and Chapter 8. Use the dropdown to select any
configured topic here in the Publish Instruction.

Aaaaa
TAG 1

Bbbbb
TAG 2

N

Event/Enable Tag (Aaaaa)

Data Log Status (Bbbbb)

Value 2

Value 3

Ddddd Ccccc
Eeeee

Value

230

Publish Type:
There are four types of selectable options for data type:

• On Rising Edge of Event Tag
This options allows for Event Based only publishing. This options looks at the discrete
Event/Enable tag stored at memory location Ddddd and only publishes if this tag goes
from OFF (0) to ON (1).

• On Falling Edge of Event Tag
This options allows for Event Based only publishing. This options looks at the discrete
Event/Enable tag stored at memory location Ddddd and only publishes if this tag goes
from ON (1) to OFF (0).

• On Both Edges of Event Tag
This options allows for Event Based only publishing. This options looks at the discrete
Event/Enable tag stored at memory location Ddddd and only publishes if this tag goes
from ON (1) to OFF (0) or if it goes OFF (1) to ON (1). Combined other two options.

• At Regular Time Intervals (When Enable Tag is High)
This options allows for Time Based only publishing and Event/Time Based combined
publishing. This options looks at the discrete Event/Enable tag stored at memory
location Ddddd and publishes at the specified Log Time-interval if this tag is ON.

o Time Based: To do Time Based only publishing just either turn ON (1) the
Event/Enable tag or set the Event/Enable tag to have an initial value of 1 (ON).

o Event/Time Based: To do Event/Time Based only publishing just use the
Event/Enable tag as the event control. As soon as the Event/Enable tag is ON (1)
the instruction will publish at specified Log Time-interval until this tag is turned
OFF (0).

Publish Time-interval
The IIoT (MQTT) Publish instruction will publish based on the Log Time-interval if the Publish
Type is Time Based or Event/Time Based. Use the time base dropdown to set the units and
enter the amount of time between each publish.

Time Base:
The Time Base is user selectable and allows one of the following time bases:
• Minute
• Hour

e.g. If Publish Time Interval = 15 and Time Base = Minute, then the instruction will publish every
15 Minutes. Similarly, if Publish Time Interval =11 and Time Base = Hour, then the instruction
will publish every 11 hours.

231

Publish Status:
The publish instruction will display current status of the instruction in this tag stored at memory
location Bbbbb. More than 1 status can be true at a time so if status is 66 then it is status 2 and
64. Please see below for the available statuses:

Status
Value

Description Explanation

00
Currently Data Logging
(Normal Operation)

This means the data log instruction is currently writing to
the .csv file.

02 File Open Error Cannot open .csv file. USB drive may not be plugged in.

04 File Write Error
Cannot write to .csv file. USB driver might be full. Or the
.csv file may be read only.

64 Done Data Logging
Have finished writing to the .csv file. Happens if the
instruction no longer has power or when it is data logging
only at set time intervals.

Selected Tags for Publishing:
The available tags field will have all the currently created discretes and registers for the project.
To add a tag to be data, just select the tag and press the >> button to move it over to the
selected tags. Tag from any location can be published. If publishing floating point tags the
Decimal Places for Floating Point field will give how many decimals are logged (if 5 selected then
number will be #.#####).

Note: All tags will be published in the format timestamp, value. Therefore if not using
EZAutomation’s EZ-IIoT Subscriber Utility then will see values like “1499424774,3218” where
3218 is the value of the tag and 1499424774 is the timestamp in seconds.

Memory Type Syntax (A) Range (aaaa)

Discrete

Discrete Outputs O 1-128

Discrete Internals S 1-1024

System Discretes SD 1-16

Register Discretes

Bit Access Registers* R 1-16384 / 0-15
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16
bit registers are allowed) for example for R1 you can access bit 1 using R1/0. See section 3.3.1
for more information.

Memory Type Syntax (B) Range (bbbb)

Registers

Output Registers OR 1-64

Registers Internals R 1-16384

System Registers SR 1-20

232

Note: Memory table for C, D and E pertains to all 10 tags that can be added to Publish
Instruction.

Allowed Data Formats: Discrete and all Register data types except BCD.

All examples use the above settings except the Publish Type is changed.

Example Time Based:

In this example, Publish Type is At Regular Time Intervals
(When Enable Tag is High). The instruction will publish at 1
minute intervals if the Enable tag (S2) is ON (1).

Example Event Based:

Memory Type Syntax (C, D, E) Range (cccc) Range (dddd) Range (eeee)

Discrete

Discrete Inputs I 1-128 1-128 1-128

Discrete Outputs O 1-128 1-128 1-128

Discrete Internals S 1-1024 1-1024 1-1024

System Discretes SD 1-16 1-16 1-16

Bit Access Registers* R 1-16384 / 0-15 1-16384 / 0-15 1-16384 / 0-15

Registers

Input Registers IR 1-64 1-64 1-64

Output Registers OR 1-64 1-64 1-64

Registers Internals R 1-16384 1-16384 1-16384

System Registers SR 1-20 1-20 1-20
*Bit level access to registers is possible. You will be accessing bits of certain register (only 16 bit registers are allowed) for example for R1 you can
access bit 1 using R1/0. See section 3.3.1 for more information.

233

In this example, Publish Type is On Both Edges of Event Tag.
The instruction will publish when the state of the Enable tag
(S2) is changed (from ON to OFF or OFF to ON).

Example Both Event and Time Based:

In this example, Publish Type is At Regular Time Intervals
(When Enable Tag is High). The instruction will publish at 1
minute intervals if the Enable tag (S2) is ON (1). The S3 bit will
therefore control the data log instructions.

234

Chapter 4: Simulating /
Monitoring / Debugging PLC Logic
In this Chapter…
4.1 PLC Simulator Functions .. 235

4.1.1 Simulating your PLC Logic ... 235
4.1.2 Simulator Functions .. 236
4.1.3 Simulator IO View ... 236
4.1.4 Simulator Debugging... 236

4.2 Online Mode .. 237

4.2.1 Edit Online... 238
4.2.2 Monitor Online ... 240
4.2.3 Forcing I/O .. 244

4.3 Debugging PLC Logic .. 245

4.3.1 Debug Mode ... 245
4.3.2 Breakpoints ... 247
4.3.3 Run/Single Step ... 249

4
EZAutomation

235

4.1 PLC Simulator Functions
EZRack PLC Designer Pro has entire new feature the PLC Simulator which allow users to simulate
and debug your project without any PLC hardware. This allows for easier programming of
EZRack PLC, since you can try your developed project even before you have hardware. The PLC
Simulator can not only simulate all of your PLC logic but can be used simulate and force your IO
outputs.

4.1.1 Simulating your PLC Logic
The EZRack PLC Simulator is a built in feature which behaves similarly to being online with the
actual EZRack PLC. On the other hand unlike being online no external devices are needed. The
simulator is installed with the EZRack PLC Designer Pro and works on any PC device which
satisfies the PC requirements mentioned in Section 1.1.1.

To use the simulator please follow the steps below:

1. Please create a project to simulate by following the steps in chapter 1.
2. Once the project is finished save the project and then click on the

simulate button.
3. The simulator will start and the EZRack PLC Designer Pro will load the project onto the

simulator.
a. The EZRack PLC Designer Pro will at all times try to preserve projects that exist

on the PLC or Simulated PLC. Therefore any time
the PLC project differs even slightly from the PC
project, going online will prompt you to save the
PLC project. Note: This will also happen if there is no
PLC project since that empty project is different than
your current project.

b. To preserve the PLC Project press Yes and you will be able to save the project

under a different file name.
c. Press No to continue without saving the PLC Project.
d. Before going online the PC project will be transferred to the PLC or PLC

Simulator and for that you need to STOP the PLC or Simulator.
e. Afterward the PLC or Simulator needs to be started.

4. The EZRack PLC Designer Pro will now behave as if you were online with a (simulated)

PLC. This means that all functionality of Online Mode and Debug Mode is available when
connected to the simulator. Note: Some function blocks do not do anything when using
simulator (e.g. Data Log, Open Port, etc.).

Note: Please be careful with the COM configuration since Simulator is one of the options and will
the COM will be set to simulator after using the Simulator.

236

4.1.2 Simulator Functions
The EZRack PLC Simulator has the same functionality as does being online with the EZRack PLC.
Therefore you can monitor what your PLC logic is doing, modify your logic in the simulator, turn
discretes ON/OFF, input different values into registers, and even monitor/modify your IOs.
When simulating your logic please look at Section 4.2 for more information on how to use these
operations. Note: Only 1 instance of simulator can be running at a time.

Note: Simulator Mode will be indicated in the left sidebar with
the current Mode (ON-LINE, MONITOR, and DEBUG) also noted.

4.1.3 Simulator IO View
The EZRack PLC Simulator can show you what is going on with your inputs. To examine your
current input and output status please go to I/O Graphical Layout. Please more about the I/O
Graphical Layout in Section 4.2.3. The I/O Graphical Layout behaves exactly the same in Monitor
Mode with the Simulator as it does when working directly with a PLC.

The I/O Graphical Layout when used when in Monitor Mode will display the current outputs that
are ON/OFF. For Analog outputs it will also indicate the current output value. You can also use
either the Debug/Monitor Window or the right click menu to Force Inputs ON/OFF to test your
logic. Please see Section 4.2.3 for more information on this functionality

4.1.4 Simulator Debugging
The EZRack PLC Simulator allows you to use the EZRack PLC debugging software as well.
Therefore you can debug your logic without any external devices. The debugger in the simulator
behaves exactly as the debugger for the EZRack PLC therefore please see Section 4.3 for more
information on how to use the debugger.

237

4.2 Online Mode
The EZRack PLC Designer Pro allows you to go online with the PLC at any point and time in your
program development to test your current code. Once online you can monitor what your PLC
logic is doing, modify your logic in the simulator, turn discretes ON/OFF, input different values
into registers, and even monitor/modify your IOs. To go online please follow the steps below:

1. Please open the project you wish to go online with in the EZLogic Designer Pro. To do
this please select Open / New Project in the Project Information Screen. Note: To go
online with current project in PLC, please use the Read from PLC option and save the
project to the PC before going online with the PLC.

2. Please select the project you want to open and press Click to Start Designing.

3. Once the project opens you can either select the Com configuration. Here
please select the way you would like to connect to the PLC. Possibilities
include over Ethernet, over EZ-WiFi module and serially (serial includes both serial cable
and micro-USB cable)

4. Next click the Online button. The project will be transferred to the PLC

after the EZRack PLC Designer Pro makes sure the PLC project is not lost.
a. The EZRack PLC Designer Pro will at all times try to preserve projects that exist

on the PLC. Therefore any time the PLC project
differs even slightly from the PC project, going
online will prompt you to save the PLC project.
Note: This will also happen if there is no PLC project
since that empty project is different than your
current project.

b. To preserve the PLC Project press Yes and you will be able to save the project

under a different file name.
c. Press No to continue without saving the PLC Project.
d. Before going online the PC project will be transferred to the PLC and for that

you need to STOP the PLC.
e. Afterward the PLC needs to be started.

5. Now you are online with the PLC in Online Edit Mode.

Note: To be able to go online with the PLC the project must not have any syntax errors and be
able to transfer the project to the PLC.

To exit Online Mode just press the Online button again.

238

4.2.1 Edit Online
Once the EZRack PLC Designer Pro is Online with the PLC it will look like below. The initial Mode
after entering Online Mode is Edit Online. You can at this point make changes to the Ladder
Logic and see how it works by changing to Monitor Mode. Note: Edit Online is for minor changes
only, please do not create your project Online. Some functionality is also disabled when in Edit
Online like creating subroutines, changing Ethernet Setup, changing MQTT Setup, etc.

Current Online Status
Indicates status and type of Com
connection
ON-LINE  Edit Online Mode
MONITOR  Monitor Mode
DEBUG  Debug Mode

Logic can be modified when in
Online Edit Mode. Therefore have
access to functions and can make
changes to Ladder Logic.

Use the Online button to leave
Online Mode. Also the Com button
indicates current Com status.

Functionality like Ethernet
Setup is disabled and is
View Only.

Quick access options here allow for
ease of switching between modes
(Monitor Mode or Debug Mode).
Options also exist in Menus and
Toolbars.

239

Edit Online Functionality
Below is information about some important functionality when being in Edit Online Mode.

Go Offline
To go offline you can use the Online button and the Go Offline quick access option.

Save changes (PLC and PC Project)
To save the changes you have made to the project and transfer to PLC you can use the Save
project toolbar option or menu option. You can also switch to Monitor or Debug mode.

Switch to Monitor Mode
To switch modes to Monitor Mode you can use the Switch to Monitor Mode quick Access
option. You can also go to Monitor > Switch to Monitor Mode.

Switch to Debug Mode
To switch modes to Debug Mode you can use Start Debug quick Access option. You can also go
to Monitor > Start Debug.

View Only Options when Online:
Add Subroutines, Ethernet Setup, MQTT Setup, PID Setup, COM Configuration, I/O
Configuration, Create USB File Loader File, Create OEM Package

240

4.2.2 Monitor Online
Once the EZRack PLC Designer Pro Mode is Switched to Monitor Mode it will look like below.
Monitor Mode will shows the current PLC values of all tags. This mode also allows for changing
the current state of tags and forcing I/O’s. This mode is the best way to see your current
behavior on the PLC. Note: Monitor Mode can only be switched to from Edit Online Mode.

Current Online Status
Indicates status and type of Com
connection. Also informs you about
the PLC Status (Started / Stopped)

Monitor Window allows for viewing
the status of tags and changing
status of tags. Please see more
information on the next page.

Quick access options here
allow for ease of switching
to Edit Online Mode.

Current Status of tags will be
indicated both in Monitor
Window and in the Ladder
Logic.

Use this option to View the I/O
Graphical Layout which allows
viewing I/O status and forcing I/O.

241

Monitor Window
The Monitor Window allows the user to view current status of tags and then set the value of
tags. It also allows the user to force I/O values. For ease of use it has 3 different watch modes
and a full list of tags.

Local Tags

The Local Tags tab will display all the tags
that can be currently seen in Ladder Logic
Window. The user can use this tab to
modify these values.

Set Discrete
To set discrete right click on the discrete
and select to set it ON or OFF. Note: This
option will not force it ON/OFF. If ladder
logic is setting the current value the
discrete value will not change.

Set Registers
To set the value of a register double left click on the value and then modify to wanted value.
Note: This option will not force the tag. If ladder logic is setting the current value the register
value will not change.

242

Watch Tags

The Watch Tags tab has tags that are
selected from the All Tags tab. They
are always visible in this section no
matter what ladder logic you are
viewing. The watch tags tab can be
also used to set these values the same
way they are set in the Local Tags tab.

IO Tags
The IO Tags tab will display all the
configured IO tags. It will also show you
the module the IO tag is assigned to.
This tab allows the user to force IO
values.

Force Discrete I/O
To force discrete right click on the

discrete I/O and select to force it ON or OFF.

Force Registers I/O
To force the value of a register I/O double left click on the value and then modify to wanted
value.

243

All Tags

The All Tags tab is a list of all
tags in the PLC project. Use
this tab to select the tags to
add to the Watch Tags tab.
To add a tag to the Watch
List right click on the tag and
press the Add Selected Tag to
Watch List.

Ladder Logic Right Click Options

The Ladder Logic also has some right click menus. When
selecting discretes in the ladder logic you can set them ON/OFF
same as you would in the Monitor Window. For I/O discretes
you can also force them ON/OFF.

Finally the menu allows for
easy of navigation and use
with options like Go to Rung…,
Go to Label…, Tag Database,
Go Offline, and Switch to Edit
Mode.

244

4.2.3 Forcing I/O
The EZRack PLC Designer Pro allows the user to Force I/Os. This can be done either as seen in
the previous section by using the Monitor Window, or it can be done using the I/O Graphical
View. The I/O Graphical View will display the current status of configure I/O and allow the user
to Force I/Os.

The I/O Graphical View will indicate current status of I/O with discrete I/O being red if ON or
black if OFF. Further it will indicate the I/O register values with a yellow value next to the I/O. If
a value is forced it will be indicated with an F.

You can force discrete I/O values by right clicking on
the discrete and select to Force it ON/OFF.

You can force register I/O by double clicking on the I/O value and typing
in the new value.

245

4.3 Debugging PLC Logic
The EZRack PLC Designer Pro has a new feature which allows the user to debug their PLC Logic
the same way you would debug code. This mode allows the user to add breakpoints at locations
where they would like to stop and examine what their code is doing. It further allows them to
change tag values at that point and explore results of these conditions. Please see Run/Single
Step for how to use Debug Mode.

4.3.1 Debug Mode
Once the EZRack PLC Designer Pro Mode is in Debug Mode it will look like below. Debug Mode
will start with PLC Stopped. The options on the next page will show how to use Debug Mode.
Note: Debug Mode can only be switched to from Edit Online Mode.

Current Online Status
Indicates status and type of Com
connection. Also informs you about the
PLC Status (Started / Stopped).

After a breakpoint is added
it will look like this.

Quick access options here
allow for ease of use of
debug options.

The Monitor/Debug Window
indicates the current status of
breakpoints and tags.

The Ladder Logic will indicate
the current status of tags.

246

Monitor/Debug Window
The Monitor/Debug Window allows the user to view breakpoint status and current status of
tags. Further it allows the user to modify breakpoints, tag values and force I/O values. For ease
of use it has 4 different watch modes and a full list of tags.

Breakpoints Tab

The Breakpoints tab provides
information about all the current
breakpoints in your project. It gives
the position information about this
breakpoint, plus whether the
breakpoint is enabled, and finally

how many times that breakpoint has been reached. Further double left clicking on breakpoint
brings you to that breakpoint in the Ladder Logic. The option buttons at the top of the
Breakpoints tab will be explored in the breakpoint section on the next page.

Local Tags, Watch Tags, IO Tags, and All Tags functionality is the same as in Monitor Mode.
Please see Section 4.2.2 for more information.

Ladder Logic Right Click Options

The right click menus in the
ladder logic allow you the same
functionality as in Monitor Mode.
Further it adds the Debug options
to the end of it.

To add breakpoints and modify
breakpoints right click on the
rung left bar. There you will have
the option to Add Break Point.
Once a breakpoint is added you
have further options. Please see
the breakpoint section on the
next page for more information.

247

4.3.2 Breakpoints
In the EZRack PLC Designer Pro breakpoints are locations where the logic will stop when in
Debug Mode. In Debug Mode breakpoints are added by right clicking on the Ladder Logic right
sidebar.

Adding Breakpoints
Breakpoints can only be added to rows in the Ladder Logic which contain logic. Also
breakpoints are added on the right side where the connection point is no matter

where line goes. The number below the breakpoint is how many times this breakpoint has been
reached during this debug session.

Once added the breakpoints have the following options:

Go to Breakpoint
Select a breakpoint in the Monitor/Debug Window and either double click or use the Go

to View option to go to that breakpoint in the ladder logic.

Enable Breakpoint
Use this button or the right click menu to enable a breakpoint. Logic will not stop at a

disabled breakpoint, but the breakpoint will still exist.

Disable Breakpoint
Use this button or the right click menu to disable a breakpoint. Logic will not stop at a

disabled breakpoint, but the breakpoint will still exist.

Reset Breakpoint Counter
Use this button or the right click menu to reset the breakpoint counter. The breakpoint

will count how many times this breakpoint has been reached during this debug session.

 Delete Breakpoint
Use this button or the right click menu to delete a selected breakpoint.

248

Enable All Breakpoints
Use this button to enable all breakpoints. Logic will not stop at a disabled breakpoint, but

the breakpoint will still exist.

Disable All Breakpoints
Use this button to disable all breakpoints. Logic will not stop at a disabled breakpoint, but

the breakpoint will still exist.

Reset All Breakpoint Counters
Use this button to reset the all breakpoint counters. The breakpoint will count how many

times this breakpoint has been reached during this debug session.

Delete All Breakpoints
Use this button to delete the all breakpoints.

249

4.3.3 Run/Single Step
To run debug follow the steps below:

1. After entering debug the first step is to add a breakpoint.
2. Then the user will Run Debug.
3. After the user runs debug the PLC will execute logic till it reaches a breakpoint.

a. Once the logic has reached a breakpoint the user can then single step through
the logic.

b. The user can also press to Run Debug again to execute all the logic till reach
another breakpoint.

Note: The options below are available in the Quick Access Bar on the left, in the Monitor Menu,
and in the right click Menus for the Ladder Logic.

Position of the PLC in the logic

When in Debug Mode the PLC location where it has stopped is indicated by a yellow arrow in
the Ladder Logic right sidebar. If at a breakpoint the Monitor/Debug Window will indicate that it
is at a breakpoint.

Run Debug
This will cause the PLC to execute its logic till it reaches a breakpoint. If there is

no breakpoint the PLC will continually be in run mode (PLC Started).

Note: When in Debug Run Mode, the PLC cannot be stopped.

250

Single Step
This will have the PLC execute the current rung of logic and move to the next

rung. No breakpoint is needed. If breakpoint exist then single step will stop at that breakpoint.

Note: Single step will move by rungs not rows. Every single step will bring you to the next rung.

Note: The yellow arrow indicating position of PLC will stop at the first row which has logic in the
rug and not at the top of the rung.

After a single step the yellow arrow indicating position will be at the next rung.

Disable/Enable Output
When debugging it might be advantageous to disable outputs. Use this

option to disable or enable outputs.

Note: After leaving debug outputs will be enabled.

251

Chapter 5: Message Display
on EZMarquee

In this Chapter…
5.1 Message Display on EZMarquee .. 252
5.2 Message Controller Function ... 253

5.2.1 Message Database .. 255
5.2.3 Displaying Messages ... 261
5.2.4 Example ... 262

5

EZAutomation

252

5.1 Message Display on EZMarquee
EZRack PLC allows you to display text messages on
EZMarquee LED displays. EZAutomation offers several
marquee models, starting from single-line 10-characters,
to 4-line 40-characters, for plant-wide communications.
Large marquee displays are visible from a distance and get
the attention of operators and management, providing
them with invaluable production information and
machine/process status instantaneously.

EZRack PLC makes it extremely simple to integrate an EZMarquee in a control system. The
EZRack PLC has built-in features to make displaying messages on EZMarquee very easy.

The EZRack PLC has a message database where you can define all of the messages. Each
message is identified by a unique message number and is displayed by telling EZRack PLC the
identifying number of the message.

The EZRack PLC displays a message using one of two methods:

• Send-to-Marquee instruction
• Message controller function

The Send-to-Marquee instruction is described earlier in Section 3.3.10 of this manual. A
description of the Message Controller function appears below. Send-to-Marquee is an
instruction that you use in your ladder logic. While the Send-to-Marquee instruction is more
flexible (allowing you to define a register that would contain a message number, masking the
message number, etc). The Message Controller function is easier to use, and for most of the
applications it will be more than adequate. The rest of this chapter will focus on the Message
Controller Function.

253

5.2 Message Controller Function
We recommend that you use either the Send-to-Marquee instruction, or the message controller
feature, but not both. However, if you choose to use both methods in the same program, make
sure that the messages are properly triggered and that the two methods are not fighting to send
messages at the same time.

The message controller in the EZRack PLC consists of the following:
(Register/Discrete address in parentheses)

1. A Message Database
2. Message-Number System Register (SR20)
3. Message-Enable System Discrete (SD5)
4. Select-Baud-Rate System Discrete (SD6)
5. Message-Number-Not-Found System Discrete (SD7)
6. Message-Controller-Busy System Discrete (SD8)

Message Database
The Message Database holds all messages that you may want to
display. Each message has a unique identifying number. To display a
message, the corresponding message number is moved to message
register SR20.

Message Number Register
SR20 is defined as the Message Number Register. The message
corresponding to the value in this register is displayed on EZMarquee,
provided that SD5 is set.

254

System Discretes
The Message Controller function uses a few discrete system bits to manage the message display.
The table below summarizes the functions of the System Discretes (SD5-SD8):

Bit Functionality Access Description

SD5 Enable Bit Read/Write 1: Enables message controller function
0: Disables message controller function

SD6 Baud Rate Read/Write 0: (Default) 9600 Baud
1: 38400 Baud

SD7 Message Number
not Found

Read Only 1: Message number in SR20 did not match any message in
database (Message defined as “default” is sent)
0: Otherwise

SD8 Message
Controller Busy

Read Only 1: Message controller busy processing a message
0: Message controller function is free

The operation of the Message Controller is shown in the diagram below:

Ladder Logic moves
message # in this

register

EZRack PLC looks
up the message

that matches this
number

The looked-up
message is

transferred on the
serial port to
EZMarquee

255

5.2.1 Message Database
As mentioned earlier, the Message Database holds all the
messages to be displayed. Click onto the Setup Menu and
select Message Database to define all your messages.
Messages can have embedded variables which enable you to
display PLC register values as part of the message.

To access the Message Database, begin by clicking onto the
Setup Menu.

Once inside the Setup Menu, select Message Database and the following dialog box will appear.

The Message Database Lists all the programmed messages stored in the EZRack PLC. The default
message is a message that is displayed if the value in the message-number register does not
match any message number programmed. The default message is blank to start with. You may
define the text of the default message.

256

The functions of all of the buttons in the Message Database window are as follows:

Click the Add/Edit button to edit the selected message or to add a new one.

Click the Delete button to delete the selected message.

Click the Help button to open context-sensitive Help.

Click the OK button to accept the changes and close the Message Database dialog box.

Click the Cancel button to cancel any changes and close the Message Database dialog box.

The Set as Default Message attributes button allows you to conveniently define default
attributes for a message. A message has several properties or attributes as shown in the Add
New Message dialog box on the previous page. To setup defaults, select the message whose
attributes should be considered as default, and click this button. Once defined, all fields of the
Edit dialog box will be automatically filled with the default values the next time you add a new
message, saving you time. You can change the default attributes any time.

When you click the Change attributes to Default attributes button you can select multiple
messages and change the attributes of all the selected messages to those defined as default.

257

Add/Edit

Message Number
Each message in the Message
Database has a unique number
assigned to it. The numbers
need not be contiguous--
allowing you flexibility when
organizing your messages. The
maximum number of messages
allowed in the message
database is 999. The messages
can be numbered from 1 to
65535. Enter a number
between 1 and 65535 in this
field. When you click on the
Add/Edit button, the following
dialog box will appear.

Marquee Address
EZMarquees can be networked using an RS422 network. The EZRack PLC can send a message to
one unit, a group of units, or to all units on a marquee network.

Each EZMarquee has a DIP Switch selectable Group Number (1 or 2) and Unit Number (1
through 8). Please refer to the table below for use of Marquee address fields:

To Send Messages To Select This Group & Unit Number

A specific EZMarquee Specific Unit User-programmed group (1 or 2) and Unit Numbers (1-
8).This must match with the DIP Switch setting on
EZMarquee.

All units in a Group Specific Group User-Programmed Group Number (Unit Number = 0)

All units in Network Broadcast Group=0, unit=0

258

Display Message at Position
In this group, you define where on the display the
message should start. The table below describes the
choices.

Select Description

Center Center the message on EZMarquee

Default Don’t send any positioning information with the message
(Message will start at the position where last message ended)

At position Start message at user-programmed Line and Column numbers

Clear Message check box: Check this box if you would like to clear the line before displaying the
message on that line.

Select Reset Before Display Mode
You can choose certain message reset functions before
displaying a new message. The choices are as follows:

Select Description

Do Nothing To do nothing with the previous message. The new message is
appended to previously displayed message.

Clear Display, Homer
Cursor

Clear the previous message and place cursor at Line 1, column 1.

Clear Display, Home
Cursor, Reset

Clear the previous message and place cursor at Line 1, Column 1, and
Reset EZMarquee (Reset will clear all current ASCII commands, such
as Center, Blink, etc).

Clear Display, Cursor
Unchanged

Clear the previous message, leave cursor unchanged.

Clear Line, Cursor at
Line Start

Clear only the line and place cursor at the start of the line.

Select Message Effects
This field allows you to include commands for certain message effects.
The choices are described in the table below:

Select Description

Default No Effect

Blink Whole Message The entire message will blink ON and OFF

Turn Off Blinking The message will not blink

Scroll Repeatedly The message will continuously scroll

Scroll Once The message will scroll only once

259

Message Text
In this area you Enter the actual
text of the message along with its
character size and color. To change
the text size, you select the
characters and choose the desired
size from the drop down menu. To
change the color, use the drop
down menu to select Red, Yellow,
or Green. You can also choose to

Blink selected characters of a message (to Blink the whole message, use the Blink Selected
Message effect from the drop down menu).

You can embed up to 4 variables within a message. To embed a variable, press F7 at the position
where you want to embed the variable and supply the information about the variable in the
dialog box. You can use the key combination Ctrl+Enter to move the next line in the Edit Text
box. The maximum number of characters per message is 200 (this includes any embedded
attributes such as text color, text size, etc).

Preview
The Preview function allows you to see how the message will look
on the marquee. Blink and scroll effects are also shown; however,
these are only representations since the scroll/blink may appear
differently on the actual marquee.

Finally, to add the message, click the Add New Message button. You will see the message added
to the database.

260

5.2.2 Communication Setup
The EZRack PLC sends messages to an EZMarquee over a serial RS422 port. All communication
parameters (Data Bits, Parity, and Stop Bits), except Baud Rate, are fixed between two devices.

The EZRack PLC supports two Baud Rates: 9600 (factory default), and 38,400. The EZRack PLC
uses System Discrete SD6 to select between the two baud rates as follows.

Bit SD6
State

Baud Rate
Selected

0 9600

1 38400

Please set SD6 to the proper value based on the Baud Rate of the EZMarquee in your
initialization logic.

261

5.2.3 Displaying Messages
To send a message to the marquee, set the Message-Enable bit (SD5) and
place the number of the message to be displayed in the Message-Number
register (SR20). When you set the enable bit, the EZRack PLC will open the
communication port using the Baud Rate determined by SD6 and sends the
message corresponding to the message number in the SR20 register. If the
message number is not found in the message database, EZRack PLC will set
bit SD7 to indicate that the message number is not found and sends the

“Default” message. You may monitor SD7 to detect this condition. EZRack PLC also sets the SD8
bit whenever it is busy processing a message. You should not change the Message Number
register when SD8 is 1 (Busy), otherwise part of the previous message may be lost.

Once a message has been sent to the marquee, it is not sent again until one or more of the
following conditions occur:

1. SD5 is disabled and enabled again.
2. The value of the register(s) embedded in the message changes.

If the embedded register value changes, the message on EZMarquee is refreshed. The table
below summarizes the functions of System Discrete (SD5-SD8):

Bit Functionality Access Description

SD5 Enable Bit Read/Write 1: Enables message controller function
0: Disables message controller function

SD6 Baud Rate Read/Write 0: (Default) 9600 Baud
1: 38400 Baud

SD7 Message Number
not Found

Read Only 1: Message number in SR20 did not match any message in
database (Message defined as “default” is sent)
0: Otherwise

SD8 Message
Controller Busy

Read Only 1: Message controller busy processing a message
0: Message controller function is free

262

5.2.4 Example
Assume that the EZRack PLC is controlling a
machine that makes parts. We need to
display Production and Reject Rate, available
in tags “Production Rate” (R50) and “Reject

Rate” (R60) respectively, as shown in the marquee image to the left. Logic also allows for a
“Machine Down” message. Machine status is available in scratch bit S100. In order to produce
this example, begin by adding your messages to the Message Database. You can do so by
performing the following steps:

1. Click onto the Setup Menu and select Message Database.

2. Click the Add/Edit button to open the
Add New Message # dialog box and set the
parameters as shown in the image to the
left. We created a message “Machine
Down” as message number 1.

Once you’ve set the parameters as shown
to the left, click onto the Add New
Message/Apply changes button. The
Message Database will appear as shown in
the image to the below.

3. The Production/Rejection rate message has a static part and a dynamic part. We create
these as two messages. The static message is created as message #2 and is sent only
once. The Dynamic part is created as message #3, and is sent repeatedly. Repeat the
instructions in step 2 and set up the parameters in Messages 2 and 3 as shown in the
two examples on the next page.

263

As shown in the dialog boxes above, use F7 to embed variable data. Variable Data appears as
“<_#>” in the Message Database and in the Message Text box. You can click in the text box onto
“<_#>” to edit the embedded variable. Please refer to the EZMarquee manual for message
syntax and details. We’ve provided a table of Valid ASCII commands at the end of this section.

Once you’ve completed those first
three steps, the Message Database
should appear as shown to the left.

Now that you’ve set up the Message Database, you’ll need to design the ladder logic in order to
complete this example project. You only need to design 3 Rungs of ladder logic. To design these
Rungs, perform the following steps.

Rung 1: Enable Marquee & Check Status

The FIRST SCAN contact sets the Marquee Enable SD5. Input 1
controls the machine status.

264

Rung 2: Marquee Control

Line 1: If Machine Status (S100) is OFF, set
the Marquee Message Register to SR20 to
a value of 1. This will display the “Machine
Down” (Message 1) on the Marquee.

Line 2: When the machine switches from
stop to run, set the Marquee Message
Register SR20 to a value of 2. This will
display the “Production Rate” and “Reject
Rate” (Message 2) on the marquee.

Line 3: Display and update the production
rate value and the reject rate value on the
Marquee.

Rung 3: Production & Reject Rates

This rung simulates
production and reject rates.

265

The table below summarizes the Valid ASCII Commands in EZMarquee. For information on
message syntax and details, please refer to the EZMarquee User Manual.

Valid ASCII Commands

^Agguuuu Selecting Unit and Group Number

^En Resetting Display

^Hrrcc Cursor Positioning With Line Clearing

^Mrrcc Cursor Positioning Without Line Clearing

^ln Cursor Positioning at Carriage Return

^Jn Selecting Text Wrap

^Cn Selecting Center Mode

^dCc Selecting Character Color

^Ln Selecting Number of Sticks per Line

^Kn Selecting Character Size

^Bn Selecting Blink Mode

^Xn Selecting Blink Delimiters On/Off

^Gbbcc Selecting Blink On/Off Rate

^Dn<message text>^N Display Scrolling Text

All ASCII Commands listed above are Case Sensitive

266

Chapter 6: PID Loop

In this Chapter…
6.1 Introduction to PID .. 267
6.2 PID Setup .. 270
6.3 PID Monitor .. 281

6
EZAutomation

267

6.1 Introduction to PID
Industrial Manufacturing Processes involve many variables such as temperature, pressure, flow,
etc. It is important to control these variables for proper operation of the process.

There are several methods to control process variables. PID is one of the most popular control
algorithms used in the industry. PID, as applied to Industrial Process Controls, stands for
Proportional, Integral and Derivative control algorithm. The algorithm computes control action
by using a mathematical equation which contains Proportional, Integral (Reset) and Derivative
(Rate) terms. With proper choices of P, I, and D terms, a user can maintain a process value very
close to the Setpoint. In addition, if the Setpoint or the process dynamics changes, the PID
algorithm can bring the process back under control quickly. Selection of appropriate P, I and D
coefficients is critical to the proper operation of the PID control. A block diagram of a generic
process control is given below:

As shown in the figure, the user sets a target or Setpoint for the process. The system compares
the actual Process Variable against the Setpoint and generates an Error value. The PID algorithm
uses this error and computes a Control Variable as a function of the error. The computation
function contains P, I, and D terms with user defined coefficients. The PID algorithm’s goal is to
minimize the error. If the Setpoint changes or the process is disturbed (resulting in a change in
the Process Variable), a new error value is generated which results in a new Control Variable
that should bring the Process Variable closer to the Setpoint.

268

PID Terminology
Before we discuss more of the details involved with the PID Loop, you should have an
understanding of some of the terms used in PID.

Manufacturing Process - A process that transforms a material’s properties. The transformation
may involve physical or chemical changes in the material. Examples of processes are: Steam
Generation, Air conditioning, Milk Pasteurization, Oil refinement, etc.

Process Variable - Materials that have physical measurable properties, such as temperature,
volume, viscosity, pressure, etc. A Process variable is a measurable physical property that we
want to control. For example, in the air conditioning of a building, we want to control
temperature, and therefore temperature is the Process Variable.

Setpoint Value - The target or desired value of the Process Variable. The purpose of PID loop is
to maintain the Process Variable as close to the Setpoint as possible.

Control Variable - The Control Variable is calculated by a control algorithm. It depends on the
error and PID coefficients. (see next section for the equations used in the computations).

Error - Error equals the algebraic difference between the process variable and the setpoint.
Magnitude and variation of the error depends on the process dynamics as well as on the PID
coefficients. A well designed system will keep the error to a minimum value.

External Disturbance - Something that changes the equilibrium of the process. This results in a
change in the control action to bring the process back into range. For example, in an air
conditioned building, open doors and rainstorms are all changes that can affect the
temperature.

269

PID on EZRack PLC
EZRack PLC products support up to 8 PID loops. For each loop the user defines several
parameters (such as Setpoint, Proportional, Integral (Reset) and Derivative (Rate) Gains, Limits,
etc.(further discussed in the next section). You can change most of these parameters at run time
using ladder logic by using the EZRack PLC Designer Pro software in online mode.

PID Algorithms used in EZRack PLC
The EZRack PLC uses the following algorithms for PID computations:

Let SPn = Setpoint at sample instance n

PVn = Process Variable at sample instance n
CVn = Control Variable at sample instance n
Kp = Gain, Proportional term
Ti = Reset (integral) time in seconds
Td = Derivative or React time, in seconds
Ts = Sample time in seconds
En = Error at sample instance n
CV0 = Control Variable offset

The Error is computed as follows:

En = PVn - SPn for Direct Acting
 = SPn - PVn for Reverse Acting

Then the CVn is computed as follows:

Position Algorithm:

𝐶𝑉𝑛 = 𝐾𝑝 × [𝐸𝑛 + (𝑇𝑠/𝑇𝑖) × ∑ 𝐸𝑖

𝑛

𝑖=0

 + (𝑇𝑑/𝑇𝑠) × (𝐸𝑛 − 𝐸𝑛−1)] + 𝐶𝑉0

Velocity Algorithm:

𝐶𝑉𝑛 = 𝐾𝑝 × [𝐸𝑛 + (𝑇𝑠/𝑇𝑖) × ∑ 𝐸𝑖

𝑛

𝑖=0

 + (𝑇𝑑/𝑇𝑠) × (𝑃𝑉𝑛 − 𝑃𝑉𝑛−1)] + 𝐶𝑉0

Note: There are options in the setup that will modify the CV computations. For example, the user
can choose to use PV Square root instead of PV in error computations. Please see the PID setup
where these options are discussed.

270

6.2 PID Setup
The following section will explain how to setup a PID loop using your EZRack PLC Designer Pro
software. To access the PID Setup, perform the following steps:

1. Go to the Setup Menu and select PID. The following dialog box will appear (If you have
already defined one or more loops, the image below will be different).

2. Use the drop-down arrow to select the Number of PID Loops you would like to use (you

can select up to 8 PID Loops).
3. As soon as you select a number of loops other than 0, the following dialog box will

appear:

The Dialog box above allows you
to define all your PID Parameters.
It will show as many tabs as the
number of PID loops selected. The
tabs are labeled Loop1, Loop2,
and so on. Each PID loop requires
a contiguous block of 32 Registers
and a contiguous block of 8
discrete for storing parameters
and status. The blocks start at
user-specified starting base
addresses. In addition to the start-
of-block of addresses, following
tags are required: Process
Variable, Control Variable and,
optionally, Control Output.

The user defines the Base (or
Starting) address/tag of the

Register Block. The EZRack PLC then maps the next 31 registers automatically, making a total of
32 registers per block. Out of the block of 32 registers, 17 are used currently, and the rest are
reserved for future use. Similarly, the user defines a Base (or Starting) address/tag for the
Discrete Block. Then the EZRack PLC will map the next 7 addresses automatically, making a total
of 8 discrete in the block.

271

The dialog box shows which register of the block will store what for your ready reference. For
example, the Sample Rate is stored in the first register of the Block (Base+0), while Deadband is
in Base + 5 register. Since you know the addresses of all parameters, you can define these
parameters in this dialog box, and/or dynamically define/modify these using ladder logic during
runtime. The buttons and fields that appear in the PID Setup dialog box are explained below.

Process PID when PLC is Stopped - When PLC is stopped (not
in Run Mode), it does NOT process ladder logic or Update
I/O. However in some cases, it may be desirable to continue
the PID loop even when the PLC is stopped. Use this check

box to indicate that the PID should be processed when the PLC is stopped. The default is to
continue PID processing.

*Note: If you want the PID to be processed with PLC stopped, make sure to use physical
addresses for the PV, and CV/Control Output tags. The reason is that when PLC is stopped no
ladder executes, and ONLY PID related I/O would be updated if the “Process PID when PLC is
Stopped” is checked.

Controller Action – To determine whether the Controller Action needs set as Direct Acting or
Reverse Acting, it is helpful to understand the difference between “Process Action” and
“Controller Action.” First, ascertain what type of process (direct acting or reverse acting) best
describes your system.

 Direct Acting Process: Control Variable and Process Variable follow the same direction
i.e. Increase in Control Variable increases the Process Variable and vice versa.

o For example: In a heating application, the more power through a heater (CV)
increases the temperature (PV) or a decrease in the heater’s output will result in
a decrease in temperature.

 Reverse Acting Process: The CV and PV move in opposite direction such as an increase in
CV decreases the PV or vice versa.

o For example: In an air conditioning or cooling application, more power is applied
to create a reduction or decrease in the temperature.

For simple systems, after identifying the type of process that describes your system, set the
Controller Action as the opposite of the process. For instance, if your system utilizes a direct
acting process, the Controller Action will need set as Reverse Acting. If your system utilizes a
reverse acting process, the Controller Action will need set as Direct Acting. (See below for
further explanation.)

 Controller Action = Reverse Acting: The controller monitors PV. As PV decreases, the
Controller will increase CV and vice versa.

o For example: In the heating application listed above (a direct acting process),
the controller would need set as Reverse Acting in order to manage the

272

temperature in relation to the setpoint. So that if the temperature decreases
due to outside variables, the controller will increase the heater to restore the
temperature back to desired level. Conversely, if the temperature increases due
to outside variables, the controller will decrease the heating output to restore
the temperature back to the established setpoint.

 Controller Action = Direct Acting: The controller monitors PV. As PV increases the
controller will increase CV and vice versa.

o In the example of the cooling application (or the reverse acting process), the
controller would need set as Direct Acting. Therefore, if the temperature
increases due to outside variables, the controller will increase the cooling power
in order to restore the temperature to desired level. Conversely, if the
temperature decreases due to outside variables, the controller will decrease the
cooling output to restore the temperature back to the established setpoint.

EZRack PLC computes error term, based on this choice, as follows:
𝐸𝑛 = 𝑃𝑉𝑛 − 𝑆𝑃𝑛 for Direct Acting
𝐸𝑛 = 𝑆𝑃𝑛 − 𝑃𝑉𝑛 for Reverse Acting

Algorithm (Position or Velocity) – EZRack PLC supports two PID
algorithms, known as Position and Velocity algorithms. Select whether

you would like to use a Position math equation or a Velocity math equation.

Process Variable (PV) Tag - Use the drop-down arrow or enter a tag address where you would
like the Process Variable to be stored. You can use R or IR register types. If you use an IR type
tag, then you are reading the Process Variable directly from an Input Module. If use an R-type
after some scaling) using logic to the R-type register so that PID computations can use the PV.

*Note: If you would like PID to run while the PLC is stopped, you should choose an IR type tag so
that the PV is updated with the actual value.

Control Variable (CV) Tag - Use the drop-down arrow or enter a tag address where you would
like the Control Variable to be stored. The CV tag has the flexibility of using R or OR registers, If
you use OR, then EZRack PLC writes the CV directly to an Output Module. If you use the R type
for CV tag, you will have to move the actual CV (possibly after some scaling) using ladder to an
output module for control.

*Note: If you would like to PID to run when PLC is stopped, please use OR type tag for CV so that
it can be updated, unless you are using Control Output.

273

Base Register Tag - Base Register Tag/Address defines the starting address of a Contiguous Block
of 32 registers that are used to store PID Parameters and Status information. Please see the
dialog box to find the addresses of desired parameter within the block.

Base Discrete Tag - Base Discrete Tag/Address defines the starting address of a Contiguous
Block of 8 discretes that are used to store PID Parameters and Status information.

PID Loop Mode - In Auto mode, the PID Loop calculates a new Control Variable value every
sample period. In Manual mode, the Control Variable is controlled by user manually. The manual
mode may be used for manual control of process. PID Monitor dialog box (EZRack PLC>PID
Monitor) can be used to modify Control Variable in manual mode.

When the mode is switched from manual to auto, the integral term of the PID equation is set to
the control value. This provides bumpless transfer from manual to auto.

Anti-Windup - This option inhibits integration when the control value is saturated. It controls
the integral term of the PID equation when the control value is saturated. If Anti-Windup is
selected, the integral term is not included when the output is saturated and the sign of the Error
will cause the integral term to drive the output further into saturation. This help loops to come
back into equilibrium sooner.

Use PV Square Root - If this option is selected, Square root of PV is used instead of PV in error
computation.

Saturation - This line is for information only. This line shows the address of the discrete bit that
would be set if the Control Variable is saturated (i.e. if the Control Variable is either 0 or 4095).
You may use this in ladder logic to monitor the saturation of control variable.

274

Autotune Setup
The EZRack PLC can autotune PID loops, i.e. it can estimate the values for the Proportional Gain,
Integral (Reset) time, and Derivative (Rate) time for PID loop. The dialog box allows you to setup
the loop for autotune. EZRack PLC uses Ziegler-Nichols method to estimate the PID parameters.
Following are the setup parameters for Autotune:

Note: Autotune is performed by EZRack PLC observing open loop response to a 10% step change in the control value.
Before starting autotune, the process should be in a steady state. For best results, the steady state should be within
10% of the operating set point. During Autotune, watch the process variable closely for it to be within the safe limits.

Start Autotune - Shown on the dialog box for information only.
The Start Autotune discrete is at Discrete Base+4. EZRack PLC initiates autotuning of a loop
when this bit transitions from 0 to 1. Autotuning of the loop is started regardless of the selected
“PID Loop Mode” of the loop. Once Autotune is started, you can cancel it by setting this bit to 0.
When Autotune is finished, either from success, error, or user canceled, setting this bit from 0 to
1 will return the Autotune to an idle state freeing any memory allocated for the Autotune.

Autotune Status: Shown on the dialog box for information only. During Autotune, EZRack PLC
reports the status of Autotune in the register.

Register
Value

Description

0 Tuning Idle

1 Tuning in progress, collecting data

2 Tuning in progress, calculating values

3 Tuning done, Autotune successful

4 User canceled tuning

5 Control Value could not be incremented

6 The tuning algorithm failed to fit the curve

7 Division by zero error

8 Could not determine dead time

9 One or more of P, I, or D was out of range

10 Tuning low memory error

275

Timeout Time (in sec): User programs Autotune timeout in seconds in this register. If EZRack
PLC cannot finish autotuning within this time, the Autotune is aborted. User should program this
field based on the dynamics of the process.

• When Autotune Status = 1 (collecting data), this will time down to 0 to indicate the
progress of the data collection.

• While Autotune Status = 2 (calculating values), this register will be used as a
decrementing counter counting down to 0 indicating the progress of the calculations

Tuning Type: User selects if PI or PID tuning is required.

276

Normal Autotune Sequence

User must transition the
Start Autotune from 0 to 1

Autotune Status: 0 (Tuning Idle)

 Set Tuning Type to PID or PI
 Set Timeout time (in sec) to a time greater than what one would

expect the process to stabilize after a 10% increase in CV

Autotune Status: 1 (Tuning in Progress, Collecting Data)

 Proportional Gain “P” is set to 100, Integral Time “I” is set to 0,
Derivative Time “D” set to 0

 The CV will increase by 10%
 Timeout time will decrement until reaching 0

Timeout time expires

Autotune Status: 2 (Tuning in Progress, Calculating Values)

 Timeout time will be set with a count
 Countdown will decrement to 0 indicating the progress of

the calculations (8-10 minutes)

Countdown reaches 0

Autotune Status: 3 (Tuning Done, Autotune Successful)

 P, I, D values set to the calculated values (if PI controller is used, D is
set to 0)

 Timeout time is set to the original timeout value

User must transition the
Start Autotune from 0 to 1

Autotune Status: 0 (Tuning Idle)

 Autotune returns to idle state
 Any memory allocated during the process is freed

277

PID Parameters
The PID Parameters consist of the Sample Rate, Setpoint, Proportional Gain, Integral (Reset)
Time, Derivative (Rate) Time. The following section briefly describes each of these parameters.

Sample Rate - Enter the desired Sample Rate in this field. The Sample Rate is seconds and can be
changed from 0.05 to 99.99 seconds.
*Note: All numeric fields in this dialog box use Implied Decimal points. So to enter 0.05, you
simply enter 5; the EZRack PLC assumes two digits after the decimal point for most of the
numeric entry fields, except where noted.

Setpoint - Enter the Setpoint in this field. This is the Setpoint used in the PID Loop calculation.
The Setpoint is the desired process level.

Proportional Gain - Enter the Proportional Gain in this field. This is the gain of the proportional
term of the PID equation. The valid range is 00.00 to 99.99. Setting this to zero removes the
proportional term from the PID equation.
*Note: The decimal point is implied. For example, “125” is 1.25. Default is 1.00

Integral (Reset) Time (Ti) – The units for this time are in seconds. The Valid range is 00.00 to
6000.0. This (along Kp and Ts) controls the integral term. Setting it to zero removes the integral
term from the PID equation.
*Note: The decimal point is implied. For example, “125” is 12.5 seconds. Default is 0.3.

Derivative (Rate) Time (Td) - Enter the Derivative Gain in this field. This along with (Ts and Kp)
makes the coefficient of the derivative term. The units are in seconds. The valid range is 00.00 to
600.0. Setting this to zero removes the derivative term from the PID equation.
*Note: The decimal point is implied. For example, “125” is 12.5 seconds. Default is 0.3

278

PID Limits
The PID Limits consist of Deadband, Setpoint Low Limit, Setpoint High Limit, CV Low Limit, CV
High Limit, CV Offset and Error. The following section briefly describes each of these.

Deadband - Enter the Deadband value in this field. This value is compared with the error value
at loop update. If the absolute value of the error is less than the Deadband value, then the error
is considered as zero for PID computations.

Setpoint Low Limit - Enter the lower limit of your desired setpoint in this field. If the setpoint is
below this value, then it will be set to the value you've entered in this field.

Setpoint High Limit - Enter the higher limit of your desired setpoint in this field. If the setpoint is
above this value, then it will be set to the value you've entered in this field.

Control Value (CV) Low Limit - Enter the lower limit of the Control Value in this field. If the CV is
below this value, then it will be set to the value you've entered in this field. Default is 0.\

Control Value (CV) High Limit - Enter the higher limit of the Control Value in this field. If the CV
is below this value, then it will be set to the value you've entered in this field. Default is 4095.

CV Offset - This is the constant offset that is added to the control variable. So, even when the
Error is zero, the Control Variable equals offset.

Error – Shown on the dialog box for information only. EZRack PLC used this register to store
Error value.

279

Control Output
EZRack PLC allows you to control a Digital output using PID control. The digital output provides a
pulse out put on selected output address. The width of the pulse (within the cycle time) is
proportional to the control value, as illustrated below:

The following fields are programmed for the Digital Control Output: Enable Control Output:
Check box to enable Digital Control Output. If the check box is unchecked, no digital output is
provided.

Control Output Tag: Enter the discrete output address (O type) to provide Digital Control
Output from the PID loop. The output module can be of any type (DC, AC or Relay type).

Cycle Time: Enter the Cycle time for the control output in tenths of a second. While selecting
cycle time, keep in mind the load type that the output would be driving. For EM relays, we
suggest that keep this time as high as possible to extend relay life.

Min Duty Cycle: This field is for display only. It is computed from the CV Low Limit
((CV_LowLimit/4096)*100) and expressed in percentage. As the name suggest, the output will
remain on for minimum time even if the computed control value falls below the CV Low Limit.

Max Duty Cycle: This field is for display only. It is computed from the CV High Limit
((CV_HighLimit/4096)*100) and expressed in percentage. As the name suggest, the output will
remain on for this maximum time even if the computed control value is above the CV high Limit

280

Creating PID Tags
EZRack PLC can automatically create tags corresponding to all the PID loop related variables
(such as Sample Rate, SetPoint etc). To do so, perform the following steps:

1. Check the Create Tags checkbox (located beside the OK button)
in the PID dialog.

2. Click the OK button. The following dialog box appears:
This dialog box tells you the naming
convention that will be used for creating
the PID loop tags. Note that all the tag
names are fixed and denote the PID loop
number the tag is associated with the
variable the tag represents. Also, tags
representing certain variables are only
created if they were specified in the PID
Loop (example, the tag representing
Cycle Time).

3. Click the Create Tags button. At this

point all the tags are created and
the results are displayed in a dialog
as shown below. Note that if a tag
already exists, that tag will not be
created and it would be reported in
this dialog. By clicking the Save
button, you can save this list of tags
created and failed in a text file.

281

6.3 PID Monitor
This section will explain how to setup and use the PID Monitor function within the EZRack PLC
Designer Pro. You can use this function to monitor and make real-time changes to your PID
Loop. In order to use the PID Monitor function, you must be connected to the PLC. To begin,
click to the PLC Menu and select PID Monitor (as shown to the left). The dialog box below will
appear. The various fields and parameters will be explained in the following pages.

Select PID Loop - Use the drop arrow to
select which PID Loop you would like to
monitor (1 - 8).

Setpoint - This field displays the current
value of your Setpoint. You can change the
setpoint by entering a value in the New
Value field and clicking the Apply New
Values button at the bottom of the
window.

Process Variable (PV) - This field displays
the current value of the Process Variable
(PV).

Control Variable (CV) - This field displays

the current value of the Control Variable (CV).

Minimum SP - Enter the Minimum Setpoint value in this field.

Maximum SP - Enter the Maximum Setpoint value in this field.

*NOTE: When selecting your values for Minimum and Maximum SP, it’s a good idea to choose a
number relatively close to the Process Variable. That way, when your graph is created you will be
able to see more detail. The greater the range between your Minimum and Maximum SP, the
less detail your graph will display. The shorter the range, the more detailed your graph will be.
For this example, the Process Value is at 550, so the Maximum SP is set at 575 and the Minimum
SP is set for 525, leaving a range of 50 (25 above and below) to be displayed on the graph.

Minimum CV - Enter the Minimum Control Variable (CV) value in this field.

Maximum CV - Enter the Maximum Control Value (CV) value in this field.

282

Interval (mSec) - Enter the Interval value (in milliseconds) in this field.

No of Ticks - In this field, enter the Number of Ticks you would like to have displayed in the
graph.

Show Grid Lines - Check this box if you would like Grid Lines to be displayed in your graph.

Sample Rate - In this field enter the Sample Rate to determine how often the PID Loop checks
the process.

Proportional Gain - in this field enter the value of the Proportional Gain.

Integral - In this field enter the Integral value.

Derivative - In this field enter the Derivative value.

Mode - In this box you can choose Auto or Manual (you can only change the Control Variable in
the Manual Mode).

283

Start Monitoring
Once all of the parameters are defined, press the Start Monitoring button (shown to the left) to
begin monitoring your PID Loop. A graph will begin to appear as shown in the image below:

As you can see, the graph above has been created using the parameters explained on the
previous page. The Setpoint and Process Variable were set to 450 and are represented in the
graph by the line running through the middle of the graph. The Minimum SP of 400 is shown at
the bottom left and the Maximum Limit of 500 is shown at the top left of the graph. The Control
Variable was set to 110 and is represented on the right side of the graph. The rest of the
controlling buttons for PID Monitor are explained on the next page.

284

End Monitoring / Start Monitoring - Press this button when you wish to stop / start the PID
Monitor.

Apply New Values - Press this button once you have changed some of the parameters in PID
Monitor and would like to begin monitoring those changes.

Freeze Graph - Press this button if you would like to see a still picture of the graph in its current
state.

Export to Excel - Press this button to send all of the data within the graph to an Excel
spreadsheet (you must have the Excel software installed onto your computer).

Close - Press this button stop the monitoring process and close the PID Monitor window.

285

Chapter 7: EZRack
Communication (Modbus, ASCII, etc.)
In this Chapter…
7.1 Supported EZRack Communications .. 286

7.1.1 EZRack Serial Communications ... 286
7.1.2 EZRack Ethernet Communications .. 286

7.2 Modbus Communications .. 287

7.2.1 Setup EZRack as an Ethernet Modbus Master .. 288
7.2.2 Setup EZRack as an Ethernet Modbus Slave ... 293
7.2.3 Setup EZRack as a Serial Modbus Master (Modbus RTU) ... 294
7.2.4 Setup EZRack as a Serial Modbus Slave (Modbus RTU) .. 300
7.2.5 Modbus Tips and Troubleshooting ... 303

7.3 ASCII Communication .. 305

7.3.1 Setup EZRack to Send Out ASCII Communications ... 307
7.3.2 Setup EZRack to Receive ASCII Communications .. 308

7
EZAutomation

286

7.1 Supported EZRack Communications

The EZRack PLC supports multiple different options for communication with other devices.
These communications originate from the Serial or Ethernet port. Some communications need
to be setup in the EZRack Designer Pro and others are always available. Please refer to the lists
below for information about setup and use of these communications.

7.1.1 EZRack Serial Communications
The EZRack currently supports the following Serial Communications:

 AVG EZRack Protocol – This protocol is used for HMI communication and does not need
to be setup. The HMI can immediately talk to EZRack over the EZ-CBL or equivalent
cable.

 Modbus RTU Protocol – This protocol can be used for any third party communication.
The EZRack PLC does need to be setup to be a Modbus Master. No setup is needed for
the EZRack to act as a Modbus Slave. To communicate over Modbus RTU a RS422 /
RS485 cable is needed, please see Section 7.2 for more information.

 ASCII Protocol – This is the most basic binary commutation where all information is sent
over in ASCII format. This communication must be setup in the EZRack Designer Pro. For
more information please see Section 7.3 for more information.

7.1.2 EZRack Ethernet Communications
The EZRack currently supports the following Serial Communications:

 AVG EZRack TCP/ IP Protocol – This protocol is used for HMI communication and does
not need to be setup. The HMI can immediately talk to EZRack over Ethernet.

 Modbus TCP/IP Protocol – This protocol can be used for any third party communication.
The EZRack PLC does need to be setup to be a Modbus Master. No setup is needed for
the EZRack to act as a Modbus Slave. Please see Section 7.2 for more information.

 IIoT/MQTT Protocol – This protocol is the mainly used for Industrial Internet of Things
communication but can be used with any device that supports MQTT protocol. Please
see Chapter 8 for more information.

 EtherNet/IP Protocol – This protocol can be used to communicate to any device which
uses EtherNet/IP communication. Please see Chapter 9 for more information on how to
use and setup EtherNet/IP.

287

7.2 Modbus Communications

EZRack PLC provides connectivity to other devices over Modbus RTU and Modbus TCP/IP
protocol. You can use EZRack PLC either as a Modbus Master/Client or a Modbus Slave/Server.

In this document we will use Modbus Master and Modbus Client synonymously. Similarly,
Modbus Slave and Modbus Server would be used synonymously.

When used as a Modbus Master/Client, EZRack PLC communicates and exchanges data with
other Modbus Slaves/Servers. When used as a Modbus Slave, the EZRack PLC can respond to
Modbus commands from a Master. The EZRack can be used both as Modbus Master and Slave
at the same time if using Modbus TCP/IP. For Modbus RTU only 1 connection can be made a
time.

The Ethernet port on the EZRack PLC is used for Modbus TCP/IP connection. Please see section
7.2.1 and 7.2.2 for more information on how to setup the EZRack PLC for Modbus TCP/IP
communication.

The Serial port on EZRack PLC is used for the Modbus RTU connection. Please see section 7.2.3
and 7.2.4 for more information on how to setup the EZRack PLC for Modbus RTU
communication.

Please see the next page for Modbus Master Instruction Basics.

288

Modbus Master Instruction Basics

Select whether using Modbus
RTU or Modbus TCP/IP

Control and Error are the
EZRack registers with the
Modbus Master Instruction
status information.

PLC Address is the starting
location in the EZRack PLC
where written or read
information is stored.

Enter how many
consecutive registers or
coils written or read from
the Slave Device.

For Register Communication
select Byte Order

Use the offset to select the
address you will be
communicating to. If you
use offset 5 then the address
that will be read is 300005.

Select the Modbus operation this instruction
will do. The options including Read or Write,
Coils or Registers, One or Many.

For Modbus RTU enter the
Modbus Slaves ID

For Modbus TCP/IP enter the
Modbus Slaves IP Address

289

7.2.1 Setup EZRack as an Ethernet Modbus Master

The EZRack PLC can act as a Modbus Master to communicate to any third party device that
supports Modbus TCP/IP communication. The EZRack currently supports up to 4 simultaneous
connections at a time for read / write operations. To setup the EZRack please follow the
directions below.

1. In an open project select the Modbus Master instruction from
the Instructions Menu or the Operator Bar.

2. Add the instruction to your ladder logic. Then double click on it

to open the setup dialogue.

3. In the Instruction Details use the Communications drop down and select Ethernet
(Modbus TCP/IP). This will disable the slave ID option and bring up the IP address input
area.

4. In the IP address input please put in the IP address of the Modbus Slave/Server. For

example 10.1.200.100.

290

5. Next in the Modbus Command and Address Offset section select the Modbus Command

to use. The table below summarizes what address range each command can write to or
read from.

Modbus
Command

Code Modbus Address Range*

Read Coils 01
000001 – 065535 (Offset 1 – 65535)
No more than 1024 Coils at a time

Read Discrete
Inputs

02
100001 – 165535 (Offset 1 – 65535)
No more than 1024 Coils at a time

Read Holding
Registers

03
400001 – 465535 (Offset 1 – 65535)
No more than 100 Holding Registers at a time

Read Input
Register

04
300001 – 365535 (Offset 1 – 65535)
No more than 100 Holding Registers at a time

Write Singe Coil 05
000001 – 065535 (Offset 1 – 65535)
Only one at a time

Write Single
Register

06
400001 – 465535 (Offset 1 – 65535)
Only one at a time

Write Multiple
Coils

15
000001 – 065535 (Offset 1 – 65535)
No more than 1024 Coils at a time

Write Multiple
Registers

16
400001 – 465535 (Offset 1 – 65535)
No more than 100 Holding Registers at a time

*(only Offset entered; type is implied by the command)

For registers you further change the Byte Order of the data by using the Byte Order
selection.

291

6. In the Address Offset Input the address you will communicate to.

The address offset can be tag based but it always formulated as an offset based on the
used command. Below are a few example:

Example 1:
To read one coil at address 200, you will select Modbus Command Read Coils (01). Then
in the Constant Offset input the value of 200. The Address area will now show 000200.

Example 2:
To write multiple registers at addresses 400005 – 4000020, you will select Modbus
Command Write Multiple Registers (16). Then in the Constant Offset input the value of
5. The Address area will now show 400005.

7. The Data Length is only available if reading or writing multiple coils/registers. The data
length can be tag based or you can put in a constant value. For each Modbus Command
the maximum data length will be shown to the side of the Constant Input location.

8. Next the PLC Address must be input. This is the location where the value will either be

written (if reading from Slave) or read from (if writing to Slave).

If multiple coils/registers are being written or read then the PLC Address is the starting
address. For example if reading 10 registers from the Slave and the PLC Address tag
address is R100 then the values will be written to R100, R101, R102… and R109. Note:
These tags will not be auto created, therefore the Auto Addressing will not ignore them
and it could be possible they are used in another tag.

292

9. Finally for the Modbus Master Instruction enter a register tag for the Control and Error.
There is also an option to increase or decrease the time it takes before the
communication will timeout. The tables below give values and descriptions for control
and error codes.

Control Bit Number Status when set

B0 (LSB) Modbus serial Enable

B1 Waiting on reply

B2 Reply processed

B3 Not used

B4 Invalid length for starting address

ERROR CODE Error Description

01 Illegal Function
The function code (command code) in the Modbus
Master command is not understood by the Slave.

02 Illegal Data Address
The Modbus Master command tried to access an
address not available in the Modbus slave device.

03 Illegal Data Value
The Modbus Master Instruction sent a value not
acceptable to the slave.

04 Slave Device Failure
An error occurred in slave device, while the slave was
trying to perform action requested by Modbus Master.

05 Timeout
A reply was never received from the slave (the
communication link Between the Master and the Slave
may be disconnected.)

07 Checksum Error Error in check sum of the reply

08 Slave ID Failure
The slave id in the master command message does not
match the slave id Returned in the reply message from
the Slave.

09 Port not open error
The Port on EZRack PLC is not opened for Modbus
Master Instruction

10. Now that the Modbus Master instruction is created, a contact needs to be placed in
front of the instruction. The Modbus Master instruction is only executed once when
power is applied. Therefore if
you would like to have the
instruction constantly repeat,
place a normally closed
contact in front of the
Modbus Master Instruction
and a normally open coil after.

293

7.2.2 Setup EZRack as an Ethernet Modbus Slave

The EZRack PLC is always configured to act as a Modbus Slave. If the EZRack gets a valid Modbus

command via TCP/IP it will reply with the requested information. There is no setup needed on

the EZRack PLC. Please consult the Modbus Memory Map Table below to know which tags to

request for the information you want.

Modbus Memory Map

EZRack PLC Type Range Modbus Address Modbus Type

O – Discrete Outputs O1 – O128 00001 – 00128 DISCRETE

S – Discrete Internals S1 – S1024 01001 – 02024 DISCRETE

SD – System Discrete SD1 – SD16 03001 – 03016 DISCRETE

I – Discrete Inputs I1 – I128 10001 – 10128 DISCRETE

IR – Input Registers IR1 – IR64 300001 – 300064 WORD

R – Register Internals R1 – R16384 400001 – 416384 WORD

OR – Output Registers OR1 – OR64 450001 – 450064 WORD

SR – System Registers SR1 – SR20 451001 – 451020 WORD

294

7.2.3 Setup EZRack as a Serial Modbus Master (Modbus RTU)

The EZRack PLC can act as a Modbus Master to communicate to any third party device that
supports Modbus RTU communication. To setup the EZRack please follow the directions below.

For Modbus RTU communication you will need to use Port 1 of the EZRack PLC and you will need

a RS422 or RS485 cable. Please refer to the chart below for pin out information.

1. In an open project select the Open Port Command from
the Instructions Menu or the Operator Bar.

2. Add the instruction to your ladder logic. Then double click

on it to open the setup dialogue.

PIN CONFIGURATION

Pin Number Function

1 SD -

2 TXD

3 RXD

4 RD -

5 GND

6 SD +

7 CTS

8 RTS

9 RD +

295

3. In the Open Port Instruction please make sure the Baud Rate, Parity, Data Bits and Stop
Bits match the configuration of your other device.

4. Next please select RS422 or RS485 based on which cable you are using. Note: RS232

does not work for Modbus Master or Modbus Slave.

5. Finally make sure that the selected protocol is Modbus Master. Note: As soon as the
Open Port Command is used the PLC will no longer be able to communicate over Port 1
(the primary CPU port).

6. Next press OK and your Port 1 is now available to be used to communicate to your
Modbus Slave.

296

7. Next select the Modbus Master instruction from the Instructions Menu or the Operator
Bar.

8. Add the instruction to your ladder logic. Then double click on it to open the setup

dialogue.

9. In the Instruction Details make sure the Communications option is Serial RS422
(Modbus RTU).

10. Next for the Slave ID input the ID number of the slave you wish to communicate to. This

option can also have a tag so you can change the slave you communicate to during
operation. Note: Only 1 Modbus RTU communication can happen at a time. Therefore
please wait till the Modbus Communication ends before starting another one.

297

11. Next in the Modbus Command and Address Offset section select the Modbus Command

to use. The table below summarizes what address range each command can write to or
read from.

Modbus
Command

Code Modbus Address Range*

Read Coils 01
000001 – 065535 (Offset 1 – 65535)
No more than 1024 Coils at a time

Read Discrete
Inputs

02
100001 – 165535 (Offset 1 – 65535)
No more than 1024 Coils at a time

Read Holding
Registers

03
400001 – 465535 (Offset 1 – 65535)
No more than 100 Holding Registers at a time

Read Input
Register

04
300001 – 365535 (Offset 1 – 65535)
No more than 100 Holding Registers at a time

Write Singe Coil 05
000001 – 065535 (Offset 1 – 65535)
Only one at a time

Write Single
Register

06
400001 – 465535 (Offset 1 – 65535)
Only one at a time

Write Multiple
Coils

15
000001 – 065535 (Offset 1 – 65535)
No more than 1024 Coils at a time

Write Multiple
Registers

16
400001 – 465535 (Offset 1 – 65535)
No more than 100 Holding Registers at a time

*(only Offset entered; type is implied by the command)

For registers you further change the Byte Order of the data by using the Byte Order
selection.

298

12. In the Address Offset Input the address you will communicate to.

The address offset can be tag based but it always formulated as an offset based on the
used command. Below are a few example:

Example 1:
To read one coil at address 200, you will select Modbus Command Read Coils (01). Then
in the Constant Offset input the value of 200. The Address area will now show 000200.

Example 2:
To write multiple registers at addresses 400005 – 4000020, you will select Modbus
Command Write Multiple Registers (16). Then in the Constant Offset input the value of
5. The Address area will now show 400005.

13. The Data Length is only available if reading or writing multiple coils/registers. The data
length can be tag based or you can put in a constant value. For each Modbus Command
the maximum data length will be shown to the side of the Constant Input location.

14. Next the PLC Address must be input. This is the location where the value will either be

written (if reading from Slave) or read from (if writing to Slave).

If multiple coils/registers are being written or read then the PLC Address is the starting
address. For example if reading 10 registers from the Slave and the PLC Address tag
address is R100 then the values will be written to R100, R101, R102… and R109. Note:
These tags will not be auto created, therefore the Auto Addressing will not ignore them
and it could be possible they are used in another tag.

299

15. Finally for the Modbus Master Instruction enter a register tag for the Control and Error.
There is also an option to increase or decrease the time it takes before the
communication will timeout. The tables below give values and descriptions for control
and error codes.

Control Bit Number Status when set

B0 (LSB) Modbus serial Enable

B1 Waiting on reply

B2 Reply processed

B3 Not used

B4 Invalid length for starting address

ERROR CODE Error Description

01 Illegal Function
The function code (command code) in the Modbus
Master command is not understood by the Slave.

02 Illegal Data Address
The Modbus Master command tried to access an
address not available in the Modbus slave device.

03 Illegal Data Value
The Modbus Master Instruction sent a value not
acceptable to the slave.

04 Slave Device Failure
An error occurred in slave device, while the slave was
trying to perform action requested by Modbus Master.

05 Timeout
A reply was never received from the slave (the
communication link Between the Master and the Slave
may be disconnected.)

07 Checksum Error Error in check sum of the reply

08 Slave ID Failure
The slave id in the master command message does not
match the slave id Returned in the reply message from
the Slave.

09 Port not open error
The Port on EZRack PLC is not opened for Modbus
Master Instruction

16. Now that the Modbus Master instruction is created, a contact needs to be placed in

front of the instruction. The Modbus Master instruction is only executed once when

power is applied. Therefore if you would like to have the instruction constantly repeat,

place a normally closed

contact in front of the

Modbus Master

Instruction and a

normally open coil after.

300

7.2.4 Setup EZRack as a Serial Modbus Slave (Modbus RTU)
The EZRack PLC is always configured to act as a Modbus Slave but to communicate over Modbus

RTU to the EZRack PLC, Serial Port 1 needs to be open and a valid Slave ID needs to be assigned

to the EZRack PLC. To open Serial Port 1 follow the directions below. Once the Serial Port is open

please consult the Modbus Memory Map Table below to know which tags to request for the

information you want.

Modbus Memory Map

Open Serial Port 1
For Modbus RTU communication you will need to use Port 1 of the EZRack PLC and you will need

a RS422 or RS485 cable. Please refer to the chart below for pin out information.

EZRack PLC Type Range Modbus Address Modbus Type

O – Discrete Outputs O1 – O128 00001 – 00128 DISCRETE

S – Discrete Internals S1 – S1024 01001 – 02024 DISCRETE

SD – System Discrete SD1 – SD16 03001 – 03016 DISCRETE

I – Discrete Inputs I1 – I128 10001 – 10128 DISCRETE

IR – Input Registers IR1 – IR64 300001 – 300064 WORD

R – Register Internals R1 – R16384 400001 – 416384 WORD

OR – Output Registers OR1 – OR64 450001 – 450064 WORD

SR – System Registers SR1 – SR20 451001 – 451020 WORD

PIN CONFIGURATION

Pin Number Function

1 SD -

2 TXD

3 RXD

4 RD -

5 GND

6 SD +

7 CTS

8 RTS

9 RD +

301

Direction to Open Serial Port 1

1. In an open project select the Open Port Command from the Instructions Menu or the

Operator Bar.

2. Add the instruction to your ladder logic. Then double click
on it to open the setup dialogue.

3. In the Open Port Instruction please make sure the Baud Rate, Parity, Data Bits and Stop
Bits match the configuration of your other device.

302

4. Next please select RS422 or RS485 based on which cable you are using. Note: RS232
does not work for Modbus Master or Modbus Slave.

5. Next select Modbus Slave for the protocol.

6. Finally enter the Slave ID that will be assigned to the EZRack PLC.

Note: As soon as the Open Port Command is used the PLC will no longer be able to
communicate over Port 1 (the primary CPU port).

7. Next press OK and your Port 1 is now available to be used to communicate to your
Modbus Master.

303

7.2.5 Modbus Tips and Troubleshooting
When using Modbus RTU or Modbus TCP/IP keep in mind that the Modbus Master instruction
will only execute once upon power being applied to it. Also please refer to the table below for
basics of how to use multiple instructions.

Repeating Modbus Master Instruction:

This example shows a way to
repeatedly execute Modbus
Master Instruction. S1 will enable
the instruction. The Modbus
Master instruction is repeatedly

executed as long as S1 is true. (Modbus Master Instruction executes once every time the
instruction is enabled; to execute it again, the instruction should be disabled and then enabled.)

Only 1 Running Modbus Master at 1 Time Example:

This example shows two Modbus
instructions. When Normally open
contact S1 is true, first instruction gets
enabled, and communication to
addressed slave starts. S2 will become
true when S1 is true AND the Modbus
instruction completes its operation.

By placing S2 before second Modbus
instruction we ensure that the second
instruction does not start until the first is
completed. In this example S1 should

remain on until the second instruction is complete. Otherwise, when S1 turns off, S2 will also
turn off, and consequently, second Modbus master instruction may not complete.

Communication
Type

Max Concurrent
Running Instructions

Total Max Connection

Modbus RTU 1 Unlimited* RS422/RS485

Modbus TCP/IP 4 Unlimited* Ethernet

*While the number of connections total is unlimited, please make sure instructions are
down before another instructions starts. Please refer to examples below.

304

Only 1 Running Modbus Master at 1 Time Example (INCORRECT):

This example shows the INCORRECT use of the
Modbus instructions. Two instructions are
enabled simultaneously, resulting in
unpredictable behavior for Modbus RTU. This
example will function correctly for Modbus
TCP/IP.

Constant Modbus TCP/IP Communication Example:

This examples shows how to
constantly update Modbus
information from multiple slaves
when using Modbus TCP/IP. Here
both Modbus Master instructions
will run once S1 is ON and they will
update as fast as they can. Note: If
used for Modbus RTU this will result
in unpredictable behavior.

Troubleshooting Tips

Com Type EZRack is? Problem Solution
RTU & TCP/IP Master Illegal Function Please make sure the Slave supports this function.

RTU & TCP/IP Master Illegal Data Address Please make sure the needed address exist.

RTU & TCP/IP Master Illegal Data Value
Please make sure the read value is supported by
EZRack PLC

RTU & TCP/IP Master Slave Device Failure Please make sure the Slave is functioning correctly.

RTU Master or Slave Timeout
Please make sure the open port setting match those
of the other device.

TCP/IP Master or Slave Timeout
Please make sure that the correct IP address are set
and both devices are connected to Ethernet Hub (or
you can use a crossover cable).

RTU Master or Slave Checksum Error
Please make sure the open port setting match those
of the other device.

RTU Master or Slave Slave ID Failure
Please make sure the open port settings match
those of the other device. And the correct Slave ID
is used for this connection.

RTU Master Port not open error
Please make sure you have used an Open Port
Instruction before the Modbus Master Instruction.

305

7.3 ASCII Communication
EZRack PLC provides connectivity to other devices over ASCII protocol. You can send and receive
information from the serial port over RS232, RS422 and RS485. To use the Send and Receive
from the serial port you need to first open the port using the Open Port Command. ASCII
communication uses Serial Port 1 with a RS232, RS422 or RS485 cable, please refer to the table
below for pin out information.

Open Port Command
Open Port command is described in section 3.3.10 of this manual. Here we repeat this briefly.

Below is the Open Port Instruction dialog box.

The following attributes will need to be set in this
dialog box for the Modbus Network you are
connecting to.
1. Baud Rate
2. Parity
3. Data bits
4. Stop bits
5. Select Mode “RS232, RS422 or RS485”
6. For Protocol Select “None”

Note: As soon as the Open Port Command is used
the PLC will no longer be able to communicate
over Port 1 (the primary CPU port).

PIN CONFIGURATION

Pin Number Function

1 SD -

2 TXD

3 RXD

4 RD -

5 GND

6 SD +

7 CTS

8 RTS

9 RD +

306

Enter Optional Parameters:

1. Select how the Char Sequence is inputted (Hex or ASCII).
2. Enter Send Start Characters in the Start Characters field (up to 4 characters).
3. Enter Send End Characters in the End Characters field (up to 4 characters).
4. Enter Receive Start Characters in the Start Characters field (up to 4 characters).
5. Enter Receive End Characters in the End Characters field (up to 4 characters).

Adding Send To and Receive From Port Instructions

To add the Send to Port and Receive From Port instructions, perform the following steps:

1. Select or Add an ASCII tag that
contains the string to be sent in the
Source Tag field using the drop
down list (for a Receive instruction:
the String that will receive the
characters from the serial port in
the Destination Tag field).

2. Select an integer register used by the instruction for status in the Control
Register Tag field using the drop down list. The following table describes the
control bits in the register:

Bit Number Function

Bit 0 (lsb) Enable (0 = Disabled, 1 = Port is Open AND Instruction is
Enabled (Power flows to instruction))

Bit 1 Serial transmission done (1= function (transmit or receive)
done, 0=not done)

Other bits of the register are used for internal purposes and change state during
transmission/receiving.

3. Select or Add an integer register that displays the number of characters

transferred from the source tag to the serial output buffer in the Character
Count Tag field using the drop down list (for a Receive instruction: the Number
of characters transferred from the serial port to the destination tag).

4. Check either Send Start Character or Send End Character box if needed.

307

7.3.1 Setup EZRack to Send Out ASCII Communications
To send ASCII information out you need to use the Send to Serial Port instruction.

Send to Serial Port:
When power flows through this element, the Send to Serial
Port instruction will send an ASCII string present in Src at
memory location Aaaaa to the Serial Port. The control and
character count used for sending the ASCII string is specified
by Cnt at memory location Ccccc and Ctrl at memory location
Bbbbb, respectively.

This instruction can only send out the specified ASCII string if the corresponding serial port has
been already opened by the Open Port instruction in advance. If the serial port has not been
initiated, the Send to Serial Port instruction will not send the ASCII string to the specified port.

Start and End characters can also be sent along with the ASCII string being sent out from the Src
register. You can specify Start and/or End characters to be included along with the ASCII string.
The starting and ending characters are specified in the Open Serial Port Instruction.

In the example above, if S5 is ON (and the Port is Open), the Send Port command would send
the ASCII string as per programmed parameters. If the port is not yet open, the instruction will
do nothing, and the Enable Bit in the control register will remain 0, even if the S5 is on.

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

308

7.3.2 Setup EZRack to Receive ASCII Communications
To receive ASCII information you need to use the Receive from Serial Port instruction.

Receive From Serial Port:
When power flows through this instruction, the Receive
From Serial Port instruction will receive an ASCII string
from the serial port and store it in Dest at memory
location Aaaaa. The control and character count used for
receiving the ASCII string is specified by Cnt at memory
location Ccccc and Ctrl at memory location Bbbbb, respectively.

This instruction can only receive the specified ASCII string if the corresponding serial port has
been already opened by the Open Port instruction in advance. If serial port has not been
initiated, the Receive from Serial Port instruction will not receive the ASCII string.

Start and End characters can also be received along with the ASCII string being received. You can
specify Start and or End characters to be verified when received along with the ASCII string. The
starting and ending characters are specified in the Open Serial Port Instruction.

In the example above, if S6 is ON (and the Port is Open), the Send Port command would receive
the ASCII string as per programmed parameters. If the port is not yet open, the instruction will
do nothing, and the Enable Bit in the control register will remain 0, even if the S6 is on.

Aaaaa
TAG 1

Bbbbb
TAG 2

Ccccc
TAG 3

309

Chapter 8: IIoT (Industrial
Internet of Things)
In this Chapter…
8.1 IIOT (Industrial Internet of Things) .. 310

8.1.1 MQTT .. 311

8.2 MQTT Essentials ... 313

8.2.1 Basic Concepts .. 313
8.2.2 MQTT More Details and Examples ... 315

8.3 Basic MQTT Setup on EZRack PLC .. 324
8.4 Broker Setup .. 326
8.5 EZRack PLC IIoT (MQTT) Example .. 328
8.6 MQTT HIVEMQ Essentials .. 332
8.7 EZ-IIoT Subscriber Utility .. 337

8.7.1 Install EZ-IIoT Subscriber Utility .. 337
8.7.2 EZ-IIoT Subscriber Utility Setup .. 338
8.7.3 EZ-IIoT Subscriber Utility Functions .. 340
8.7.4 EZ-IIoT Subscriber Utility Best Practices ... 349

8
EZAutomation

310

8.1 IIOT (Industrial Internet of Things)
The EZRack PLC supports the Industrial Internet of Things. The EZRack PLC comes with a built in
instruction that allows the user to publish data to secure offsite MQTT Cloud Broker. This
capability allows the EZRack PLC to provide data for analysis to improve efficiency, troubleshoot
problems, and do preventative maintenance. This section explores in more depth what IIoT
(Industrial Internet of Things) means, how the EZRack PLC supports IIoT through the MQTT
protocol, and finally looks at how to setup the EZRack PLC to do MQTT communication.

What is IIoT (Industrial Internet of Things)?
The Industrial Internet of Things (IIoT) focuses on the interconnectivity and utilization of
powerful data in a manufacturing environment. IIoT enables the acquisition and accessibility of
important plant data at far greater speeds, security and reliability. IIoT incorporates machine
learning and big data technology, harnessing the sensor data, machine-to-machine
communication and automation technologies that have existed in industrial settings for years.
The driving philosophy behind the IIoT is that smart machines are better than humans at
accurately, consistently capturing and communicating data.

EZRack PLC built in IIoT and MQTT protocol support acts as a "bridge" between existing
operational technology within a plant, for example factory machines, and plant database
networks, so valuable data can be shared reliably and securely to improve plant productivity and
efficiency.

How EZRack PLC Support “Edge-Gateway” Communications and IIoT?
The EZRack PLC operates as an “Edge-of-Network” or “Edge-Gateway” device with direct
connectivity to external devices such as sensors, RTDs, analog inputs, etc. and easy to setup
secure communications with other networks such as Modbus TCP/IP. Through the use of the
MQTT protocol it can publish up to 80 tags of data per EZRack PLC CPU, thus providing a
subscriber pertinent real time data from these external devices. The use of the MQTT protocol
allows for great interoperability since it is becoming an industry standard. It also allows for great
security through the broker. It must also be noted that with the EZRack PLC, a “security breach”
to access the machine is not of any concern since there is no backwards flow of data. That is
data is only ever published from the PLC. It will never accept any data or commands back from
any server, broker or client.

311

8.1.1 MQTT
What is MQTT?
MQTT which stands for message queuing telemetry transport, is a standard Client Server
publish/subscribe messaging transport protocol that is quickly becoming the leading messaging
protocol for the Industrial Internet of Things (IIoT).

How does MQTT work?
The MQTT protocol works on a publish/subscribe (pub/sub) pattern. This is different from a
traditional client-server model in that the machine (PLC) does not directly communicate to the
server. The Pub/Sub pattern decouples a client that is publishing data (sending messages) from
the client that is subscribing to the data (receiving messages). For this pattern the sender of
messages is called the publisher and the receiver of messages is called the subscriber.

This Pub/Sub pattern essentially creates a barrier between the publisher and subscriber in that
they do not know about the existence of the other. The broker who is known by both is the link
between them. The broker can filter all the messages and distribute them to the subscriber that
is supposed to receive them. Multiple subscribers can be receiving messages from the broker at
the same time but getting different data. This allows for separating out access so only pertinent
data is received to selected individuals or “subscribers”. The graphic below shows how Pub/Sub
works.

312

What is the current functionality of EZRack PLC?
The EZRack PLC currently works as a publisher of data in the MQTT pattern. It is very flexible in
that it works with any broker that the customer would like. The EZRack PLC connects to the
broker with a username and password for security and then can publish up to 80 tags, also
known as topics, at settable intervals.

Why does EZRack PLC as an Edge-Gateway device use MQTT for its communication?
The MQTT protocol is becoming the industry standard communication protocol for IIoT. More
importantly, the MQTT protocol, provides a “bridge” between existing operational technology
within a plant, for example factory machines, and plant database networks so valuable data can
be shared reliably and securely to improve plant productivity and efficiency.

Misconceptions of IIoT and MQTT.

1. Implementation is extremely costly.
The EZRack PLC, with base rack, CPU and power supply all included is at an extremely
attractive price of $248 and has IIoT MQTT protocol built in, among many other features
including data-logging, ladder logic and function blocks, auto-tuned PID and much more…

2. Better to wait for an Industry Consensus.
MQTT is becoming the industry standard therefore a consensus around it is developing in
the manufacturing and process sectors. But even if that wasn’t true, MQTT is a light and
versatile protocol which can allow for communication with many different machines and
plant devices.

3. Is implementing IIoT really worth it?
IIoT connectivity allows “management” to see plant performance thereby allowing the plant
to optimize and track their production and efficiency. Furthermore, the implementation of
IIoT can help with offsite troubleshooting and offsite analysis of production data.

4. Adding IIoT will be complicated.
The EZRack PLC has IIoT MQTT protocol built in and therefore it is a very easy setup process.
Also if in the future you wish to add IIoT to an existing system no major changes are needed.
Please see the MQTT Essentials section to understand how simple IIoT MQTT protocol is.

313

8.2 MQTT Essentials
This section explores the basics of MQTT and how it functions. For easy setup guide please see
Section 8.3, 8.4 and 8.5.

8.2.1 Basic Concepts
Referenced from http://mqtt.org/ and http://mosquitto.org/man/mqtt-7.html

Publish/Subscribe
The MQTT protocol is based on the principle of publishing messages and subscribing to topics,
or "pub/sub". Multiple clients connect to a broker and subscribe to topics that they are
interested in. Clients also connect to the broker and publish messages to topics. Many clients
may subscribe to the same topics and do with the information as they please. The broker and
MQTT act as a simple, common interface for everything to connect to. This means that if you
have clients that dump subscribed messages to a database, for example Twitter, or even a
simple text file, then it becomes very simple to add new sensors or other data input to a
database, Twitter or so on.

Topics/Subscriptions
Messages in MQTT are published on topics. There is no need to configure a topic, publishing on
it is enough. Topics are treated as a hierarchy, using a slash (/) as a separator. This allows
sensible arrangement of common themes to be created, much in the same way as a filesystem.
For example, multiple computers may all publish their hard drive temperature information on
the following topic, with their own computer and hard drive name being replaced as
appropriate:

sensors/COMPUTER_NAME/temperature/HARDDRIVE_NAME

Clients can receive messages by creating subscriptions. A subscription may be to an explicit
topic, in which case only messages to that topic will be received, or it may include wildcards.

Quality of Service
MQTT defines three levels of Quality of Service (QoS). The QoS defines how hard the
broker/client will try to ensure that a message is received. Messages may be sent at any QoS
level, and clients may attempt to subscribe to topics at any QoS level.

Higher levels of QoS are more reliable, but involve higher latency and have higher bandwidth
requirements.

http://mqtt.org/
http://mosquitto.org/man/mqtt-7.html

314

0: The broker/client will deliver the message once, with no confirmation.
1: The broker/client will deliver the message at least once, with confirmation required.
2: The broker/client will deliver the message exactly once by using a four step handshake.

Retained Messages
All messages may be set to be retained. This means that the broker will keep the message even
after sending it to all current subscribers. If a new subscription is made that matches the topic of
the retained message, then the message will be sent to the client. This is useful as a "last known
good" mechanism. If a topic is only updated infrequently, then without a retained message, a
newly subscribed client may have to wait a long time to receive an update. With a retained
message, the client will receive an instant update.

315

8.2.2 MQTT More Details and Examples
Referenced from http://www.hivemq.com/blog/mqtt-essentials/ and http://mosquitto.org/ .A
full explanations of how MQTT function can be found in section 8.6.

MQTT History
MQTT was invented by Andy Stanford-Clark (IBM) and Arlen Nipper (Arcom, now Cirrus Link)
back in 1999, when their use case was to create a protocol for minimal battery loss and minimal
bandwidth connecting oil pipelines over satellite connection. They specified the following goals,
which the future protocol should have:

 Simple to implement

 Provide a Quality of Service Data Delivery

 Lightweight and Bandwidth Efficient

 Data Agnostic

 Continuous Session Awareness

These goals are still the core of MQTT, while the focus has changed from proprietary embedded
systems to open Internet of Things use cases. Another thing that is often confused about MQTT
is the appropriate meaning of the abbreviation MQTT. It’s a long story, the short answer is that
MQTT officially does not have an acronym anymore, it’s just MQTT.

OASIS Standard
Around 3 years after the initial publication, it was announced that MQTT should be standardized
under the wings of OASIS, an open organization with the purpose of advancing standards. On
October 29th 2014 MQTT was officially approved as OASIS Standard. MQTT 3.1.1 is now the
newest version of the protocol.

Definition of Client/Broker

Client
When talking about a client it almost always means an MQTT client. This includes publisher or
subscribers, both of them label an MQTT client that is only doing publishing or subscribing. (In
general a MQTT client can be both a publisher & subscriber at the same time). A MQTT client is
any device from a micro controller up to a full-fledged server that has a MQTT library running
and is connecting to an MQTT broker over any kind of network. This could be a really small and
resource constrained device that is connected over a wireless network and has a library
strapped to the minimum or a typical computer running a graphical MQTT client for testing
purposes, basically any device that has a TCP/IP stack and speaks MQTT over it.

http://www.hivemq.com/blog/mqtt-essentials/
http://mosquitto.org/man/mqtt-7.html
https://www.oasis-open.org/news/announcements/mqtt-version-3-1-1-becomes-an-oasis-standard

316

Broker
The counterpart to a MQTT client is the MQTT broker, which is the heart of any
publish/subscribe protocol. Depending on the concrete implementation, a broker can handle up
to thousands of concurrently connected MQTT clients. The broker is primarily responsible for
receiving all messages, filtering them, decide who is interested in it and then sending the
message to all subscribed clients. Another responsibility of the broker is the authentication and
authorization of clients. And at most of the times a broker is also extensible, which allows to
easily integrate custom authentication, authorization and integration into backend systems.
Especially the integration is an important aspect, because often the broker is the component,
which is directly exposed on the internet and handles a lot of clients and then passes messages
along to downstream analyzing and processing systems. All in all the broker is the central hub,
which every message needs to pass.

Note: A broker has only 1 message per topic therefore for data acquisition a server client (cloud
storage) or any such devices with data storage capability needs to be used. They will subscribe to
the broker and store all the messages seen.

Quality of Service Expanded

Higher levels of QoS are more reliable, but involve higher latency and have higher bandwidth
requirements.

0: The broker/client will deliver the message once, with no confirmation. Since there is no
confirmation the message might not be delivered if connection is bad. This is often called “fire
and forget” and provides the same guarantee as the underlying TCP protocol.

1: The broker/client will deliver the message at least once, with confirmation required. Will send
message till confirmation received so possible that multiples of the message can exist.

2: The broker/client will deliver the message exactly once by using a four step handshake. Will
always have exactly one of the message delivered. It is the slowest quality of service level.
Currently not supported by the EZRack PLC.

The client chooses the maximum QoS it will receive. For example, if a message is published at
QoS 2 and a client is subscribed with QoS 0, the message will be delivered to that client with
QoS 0. If a second client is also subscribed to the same topic, but with QoS 2, then it will receive
the same message but with QoS 2. For a second example, if a client is subscribed with QoS 2 and
a message is published on QoS 0, the client will receive it on QoS 0.

317

Best Practice
The following should provide you some guidance if you are also confronted with this decision.
Often this is heavily depending on your use case.

Use QoS 0 when …

 You have a complete or almost stable connection between sender and receiver. A classic
use case is when connecting a test client or a front end application to a MQTT broker
over a wired connection.

 You don’t care if one or more messages are lost once a while. That is sometimes the
case if the data is not that important or will be send at short intervals, where it is okay
that messages might get lost.

 You don’t need any message queuing. Messages are only queued for disconnected
clients if they have QoS 1 or 2 and a persistent session.

Use QoS 1 when …

 You need to get every message and your use case can handle duplicates. The most often
used QoS is level 1, because it guarantees the message arrives at least once. Of course
your application must be tolerating duplicates and process them accordingly.

 You can’t bear the overhead of QoS 2. Of course QoS 1 is a lot faster in delivering
messages without the guarantee of level 2.

Use QoS 2 when …

 It is critical to your application to receive all messages exactly once. This is often the
case if a duplicate delivery would do harm to application users or subscribing clients.
You should be aware of the overhead and that it takes a bit longer to complete the QoS
2 flow. Currently not supported by the EZRack PLC.

Queuing of QoS 1 and 2 messages
All messages sent with QoS 1 and 2 will also be queued for offline clients, until they are available
again. But queuing is only happening, if the client has a persistent session (durable connection).

318

Topics
A topic is a UTF-8 string, which is used by the broker to filter messages for each connected
client. A topic consists of one or more topic levels. Each topic level is separated by a forward
slash (topic level separator).

WildCards (Topics)
For topic navigation there exist wildcards. Two wildcards are available, + or # for use in topics.
These allow for easier access to different ranges of topics.

+ can be used as a wildcard for a single level of hierarchy. An example of its use:

sensors/+/temperature/+

can be used as a wildcard for all remaining levels of hierarchy. This means that it must be the
final character in a subscription. An example of its use:

sensors/machine/temperature/#

Example +
As another example, for a topic of "a/b/c/d", the following example subscriptions will match:

a/b/c/d +/b/c/d a/+/c/d a/+/+/d +/+/+/+

The following subscriptions will not match:

a/b/c b/+/c/d +/+/+

Example #
With a topic of "a/b/c/d", the following example subscriptions will match:

a/# a/b/# a/b/c/# +/b/c/#

319

Topic Best Practices
So these were the basics about MQTT message topics. As you can see, MQTT topics are
dynamically and give great flexibility to its creator. But when using these in real world
applications there are some challenges you should be aware of.

Don’t use a leading forward slash
It is allowed to use a leading forward slash in MQTT, for example
/myhome/groundfloor/livingroom. But that introduces an unnecessary topic level with a zero
character at the front. That should be avoided, because it doesn’t provide any benefit and often
leads to confusion.

Don’t use spaces in a topic
A space is the natural enemy of each programmer, they often make it much harder to read and
debug topics, when things are not going the way, they should be. So similar to the first one, only
because something is allowed doesn’t mean it should be used. UTF-8 knows many different
white space types, it’s pretty obvious that such uncommon characters should be avoided.

Keep the topic short and concise
Each topic will be included in every message it is used in, so you should think about making
them short and concise. When it comes to small devices, each byte counts and makes really a
difference.

Use only ASCII characters, avoid non printable characters
Using non-ASCII UTF-8 character makes it really hard to find typos or issues related to the
character set, because often they cannot be displayed correctly. Unless it is really necessary we
recommend avoid using non ASCII character in a topic.

Embed a unique identifier or the ClientId into the topic
In some cases it is very helpful, when the topic contains a unique identifier of the client the
publish is coming from. This helps identifying, who send the message. Another advantage is the
enforcement of authorization, so that only a client with the same ClientId as contained in the
topic is allowed to publish to that topic. So a client with the id client1 is allowed to publish to
client1/status, but not permitted to publish to client2/status.

Don’t subscribe to #
Sometimes it is necessary to subscribe to all messages, which are transferred over the broker,
for example when persisting all of them into a database. This should not be done by using a
MQTT client and subscribing to the multi level wildcard. The reason is that often the subscribing
client is not able to process the load of messages that is coming its way. Especially if you have a

320

massive throughput. The recommended solution is to implement an extension in the MQTT
broker.

Don’t forget extensibility
Topics are a flexible concept and there is no need to preallocate them in any kind of way,
regardless both the publisher and subscriber need to be aware of the topic. So it is important to
think about how they can be extended in case you are adding new features to your product. For
example when your smart home solution is extended by some new sensors, it should be
possible to add these to your topic tree without changing the whole topic hierarchy.

Use specific topics, instead of general ones
When naming topics it is important not to use them like a queue, for example using only one
topic for all messages is an anti pattern. You should use as specific topics as possible. So if you
have three sensors in your living room, you should use topics myhome/livingroom/temperature,
myhome/livingroom/brightness and myhome/livingroom/humidity, instead of sending all values
over myhome/livingroom.

Persistent session / Durable connections

When a client connects to a MQTT broker, it needs to create subscriptions for all topics that it is
interested in in order to receive messages from the broker. On a reconnect these topics are lost
and the client needs to subscribe again. This is the normal behavior with no persistent session.
But for constrained clients with limited resources it would be a burden to subscribe again each
time they lose the connection. So a persistent session saves all information relevant for the
client on the broker. The session is identified by the clientId provided by the client on
connection establishment (more details).

So what will be stored in the session?

 Existence of a session, even if there are no subscriptions

 All subscriptions

 All messages in a Quality of Service (QoS) 1 or 2 flow, which are not confirmed by the
client

 All new QoS 1 or 2 messages, which the client missed while it was offlne

 All received QoS 2 messages, which are not yet confirmed to the client

That means even if the client is offline all the above will be stored by the broker and are
available right after the client reconnects.

How to start/end a persistent session?
A persistent session can be requested by the client on connection establishment with the
broker. The client can control, if the broker stores the session using the clean Session flag. If the

321

clean session is set to true then the client does not have a persistent session and all information
are lost when the client disconnects for any reason. When clean session is set to false, a
persistent session is created and it will be preserved until the client requests a clean session
again. If there is already a session available then it is used and queued messages will be
delivered to the client if available.

Best practices
When you should use a persistent session and when a clean session?

Persistent Session

 A client must get all messages from a certain topic, even if it is offline. The broker should
queue the messages for the client and deliver them as soon as the client is online again.

 A client has limited resources and the broker should hold its subscription, so the
communication can be restored quickly after it got interrupted.

 The client should resume all QoS 1 and 2 publish messages after a reconnect.

Clean session

 A client is not subscribing, but only publishing messages to topics. It doesn’t need any
session information to be stored on the broker and publishing messages with QoS 1 and
2 should not be retried.

 A client should explicitly not get messages for the time it is offline.

How long are messages stored on the broker?
An often asked question is how long is a session stored on the broker. The easy answer is until
the clients comes back online and receives the message. But what happens if a client does not
come online for a long time? The constraint for storing messages is often the memory limit of
the operating system. There is no standard way on what to do in this scenario. It totally depends
on the use case and the broker.

Retained Messages

A retained message is a normal MQTT message with the retained flag set to true. The broker will
store the last retained message and the corresponding QoS for that topic. Each client that
subscribes to a topic pattern, which matches the topic of the retained message, will receive the
message immediately after subscribing. For each topic only one retained message will be stored
by the broker.

322

The subscribing client can identify if a received message was a retained message or not, because
the broker sends out retained messages with the retained flag still set to true. A client can then
decide on how to process the message.

So retained messages can help newly subscribed clients to get a status update immediately after
subscribing to a topic and don’t have to wait until a publishing clients send the next update.

In other words a retained message on a topic is the last known good value, because it doesn’t
have to be the last value, but it certainly is the last message with the retained flag set to true.

It is important to understand that a retained message has nothing to do with a persistent
session of any client. Once a retained message is stored by the broker, the only way to remove it
is explained below.

Send a retained message
Sending a retained message from the perspective of a developer is quite simple and straight-
forward. You just need to set the retained flag of a MQTT publish message to true. Each client
library typically provides an easy way to do that.

Delete a retained message
There is also a very simple way for deleting a retained message on a topic: Just send a retained
message with a zero byte payload on that topic where the previous retained message should be
deleted. The broker deletes the retained message and all new subscribers won’t get a retained
message for that topic anymore. Often deleting is not necessary, because each new retained
message will overwrite the last one.

Why and when you should use Retained Messages?
A retained message makes sense, when newly connected subscribers should receive messages
immediately and shouldn’t have to wait until a publishing client sends the next message. This is
extremely helpful when for status updates of components or devices on individual topics. For
example the status of device1 is on the topic myhome/devices/device1/status, a new subscriber
to the topic will get the status (online/offline) of the device immediately after subscribing when
retained messages are used. The same is true for clients, which send data in intervals,
temperature, GPS coordinates and other data. Without retained messages new subscribers are
kept in the dark between publish intervals. So using retained messages helps to provide the last
good value to a connecting client immediately.

323

Last Will and Testament
When a client connects to a broker, it may inform the broker that it has a will. This is a message
that it wishes the broker to send when the client disconnects unexpectedly. The will message
has a topic, QoS and retain status just the same as any other message. EZRack PLC currently
does not support Wills.

When will a broker send the LWT message?
According to the MQTT 3.1.1 specification the broker will distribute the LWT of a client in the
following cases:

 An I/O error or network failure is detected by the server.

 The client fails to communicate within the Keep Alive time.

 The client closes the network connection without sending a DISCONNECT packet first.

 The server closes the network connection because of a protocol error.

 We will hear more about the Keep Alive time in the next post.

Best Practices – When should you use LWT?
LWT is ideal for notifying other interested clients about the connection loss. In real world
scenarios LWT is often used together with retained messages, in order to store the state of a
client on a specific topic. For example after a client has connected to a broker, it will send a
retained message to the topic client1/status with the payload “online“. When connecting to the
broker, the client sets the LWT message on the same topic to the payload “offline” and marks
this LWT message as a retained message. If the client now disconnects ungracefully, the broker
will publish the retained message with the content “offline“. This pattern allows for other clients
to observe the status of the client on a single topic and due to the retained message even newly
connected client now immediately the current status.

324

8.3 Basic MQTT Setup on EZRack PLC
The EZRack PLC MQTT Publish instructions is looked at in Section 3.3.16. But before the
instruction can be used the MQTT Broker information needs to be configured. To do this please
go to Setup > MQTT Setup…. The needed information for this setup is:

Information Type Description Example

Domain Name This is the broker URL. Used to find your
broker that you have configured.

m12.cloudmqtt.com

Port Number Port number that your broker uses. 16581

Client ID Individual connection ID. Needs to be different
for every client otherwise will encounter
problems. Can be random.

ee097f5c-fa36-4929-
9414-fad17b3df3bd

User Name Your configured username for EZRack PLC
connection to broker. Should be different for
every client.

Password Your configured password for EZRack PLC
connection to broker. Should be different for
every client.

Instruction to setup MQTT:

1. Go to Setup > MQTT Setup…. You will see the following dialog box appear.

2. Use the Domain Name Lookup
with the Domain Name from the
broker to find the Broker IP
Address.

3. Enter the port number from the
broker.

4. Select your keep alive interval if
wanted. See section 8.6 for more
information.

5. Enter a unique client ID or
generate one using the Generate

Unique Id button.

325

6. Enter the user name and password for your broker.
7. Go to the MQTT topics.

8. In the MQTT Topics use the Add Topic button to create the prefixes for your tags.

The publish instruction will publish the tagname as a topic but if you want to have
more topic information create the prefix here. For example:

Note: After this topic an “/” is appended

Topic: EZRack PLCPLC/Machine1
TagName: Speed

Published Topic: EZRack PLCPLC/Machine1/Speed

9. Now in your ladder logic add the IIoT (MQTT) Publish instruction and configure it.
For configuration options please see Section 3.3.16.

326

8.4 Broker Setup
The EZRack PLC can work with any third party broker. It has been tested and used extensively
with the CloudMQTT broker. This section will go through some important information about
setup of your broker.

CloudMQTT has a free plan for testing purposes. Please see below for setup instructions.

Broker Setup Basics

1. For any broker you can go to their website and create an account. For the CloudMQTT
broker you go to https://www.cloudmqtt.com/.

2. Then the plans section will give you information on the different plans available and their
cost. The documentation provides information about how MQTT works. Support is the Cload
MQTT Tech Support. Finally the Control Panel is what you use to create the MQTT
connection.

3. After going to Control Panel, please create an account or login to an account.

4. In the account create a new CloudMQTT Instance.

5. Enter a Name, select the Data Center and then for the free plan use the Cute Cat plan.

https://www.cloudmqtt.com/

327

6. Once the Instance is create click on details to find the information needed to subscribe to

this broker.

7. The Instance Info is the information that is needed for both the EZRack PLC Designer Pro and
EZ-IIoT Subscriber Utility.

8. This information provides the details for
this connections where:

9. You can also add more users in the

Manage Users section. You just need to provide
the username and password.

10. Finally you can create ACL rules which govern what each user can access. This allows for
management and distribution of topics to the correct people.

11. You have now configured your broker and it can be used with the EZRack PLC and the EZ-
IIoT Subscriber Utility.

EZRack PLC Instance Info

Domain Name Server

Port Number Port

Client ID N.A.

User Name User

Password Password

328

8.5 EZRack PLC IIoT (MQTT) Example
This sections shows the creation of an IIoT (MQTT) Publish instruction from start to finish in a
project. It requires that the user has created a broker and has broker information.

Used Broker Information:

Information Type Information

Domain Name m12.cloudmqtt.com

Port Number 16581

Client ID Test-ID0001

User Name TEST

Password AVG123

1. In a open project go to Setup > MQTT Setup…
2. Click on Domain Name
Lookup.

3. Enter the domain name
and press Lookup. This will
find the domain’s IP
address. Once found press
Use Select IP.

4. The Broker IP will now have been entered.
5. Next input the port number (16581).
6. For this example we keep the Keep Alive Interval at 0.
7. Enter the Client ID or generate an Unique one.
8. Finally add your broker username and password.

329

9. The final result should look something like this.

10. Now go to the MQTT Topics. Use the Add Topic to add a topic, for example:

 EZRack PLCPLC/TestTopic

11. You can also select here the
QoS (Quality of Service) and
whether the message should be
retained.

12. You have now configured your

MQTT connection. Next you need to add the IIoT (MQTT) Publish instruction.

330

13. In the sidebar select the IIoT (MQTT) Publish instruction and add
it to your logic. Double click on the instruction to bring up the
configuration dialog.

14. Under publish select the type of publishing you would like. For this example it will be At
Regular Time Intervals (When Enable Tag is High).

15. Now add an Enable Tag, set the Publish Time-interval to 5 Minutes, and add an Status
Tag.

331

16. Finally move the publish tag to the selected tag area. Final result will look like this:

Where this instruction will publish the Publish Tag to the
broker every 5 minutes when the Enable (S1) tag is ON.

The published topic will be:
EZRack PLCPLC/TestTopic/PUBLISH TAG

Published value will include a timestamp and the current value of PUBLISH TAG (R1).

332

8.6 MQTT HIVEMQ Essentials
Most of this section has been take from http://www.hivemq.com/blog/mqtt-essentials/ and is
their MQTT essentials blog posts. It has been condensed here for to describe the basics of MQTT
and how it functions.

Pub/Sub Pattern
As already mentioned the main aspect in pub/sub is the decoupling of publisher and receiver,
which can be differentiated in more dimensions:

 Space decoupling: Publisher and subscriber do not need to know each other (by ip
address and port for example)

 Time decoupling: Publisher and subscriber do not need to run at the same time.

 Synchronization decoupling: Operations on both components are not halted during
publish or receiving

In summary publish/subscribe decouples publisher and receiver of a message, through filtering
of the messages it is possible that only certain clients receive certain messages. The decoupling
has three dimensions: Space, Time, and Synchronization.

Scalability
Pub/Sub also provides a greater scalability than the traditional client-server approach. This is
because operations on the broker can be highly parallelized and processed event-driven. Also
often message caching and intelligent routing of messages is decisive for improving the
scalability.

Message Filtering
So what’s interesting is, how does the broker filter all messages, so each subscriber only gets the
messages it is interested in?
Option 1: Subject-based filtering
The filtering is based on a subject or topic, which is part of each message. The receiving client
subscribes on the topics it is interested in with the broker and from there on it gets all message
based on the subscribed topics. Topics are in general strings with an hierarchical structure, that
allow filtering based on a limited number of expression.
Option 2: Content-based filtering
Content-based filtering is as the name already implies, when the broker filters the message
based on a specific content filter-language. Therefore clients subscribe to filter queries of
messages they are interested in. A big downside to this is, that the content of the message must
be known beforehand and cannot be encrypted or changed easily.
Option 3: Type-based filtering
When using object-oriented languages it is a common practice to filter based on the type/class
of the message (event). In this case a subscriber could listen to all messages, which are from
type Exception or any subtype of it.

http://www.hivemq.com/blog/mqtt-essentials/

333

There are some drawbacks to consider. The decoupling of publisher and subscriber, which is the
key in pub/sub, brings a few challenges with it. You have to be aware of the structuring of the
published data beforehand. In case of subject-based filtering, both publisher and subscriber
need to know about the right topics to use. Another aspect is the delivery of message and that a
publisher can’t assume that somebody is listening to the messages he sends. Therefore it could
be the case that a message is not read by any subscriber.

Distinction from Message Queues
So there are many confusions about MQTT, its name and if it is implemented as a message
queue or not. We will try to bring light into the dark and explain the differences. In our last post
we already pointed out that the name MQTT comes from an IBM product called MQseries and
has nothing to do with “message queue“. But regardless of the name, what are the differences
between MQTT and a traditional message queue?

A message queue stores message until they are consumed
When using message queues, each incoming message will be stored on that queue until it is
picked up by any client (often called consumer). Otherwise the message will just be stuck in the
queue and waits for getting consumed. It is not possible that message are not processed by any
client, like it is in MQTT if nobody subscribes to a topic.

A message will only be consumed by one client
Another big difference is the fact that in a traditional queue a message is processed by only one
consumer. So that the load can be distributed between all consumers for a particular queue. In
MQTT it is quite the opposite, every subscriber gets the message, if they subscribed to the topic.

Queues are named and must be created explicitly
A queue is far more inflexible than a topic. Before using a queue it has to be created explicitly
with a separate command. Only after that it is possible to publish or consume messages. In
MQTT topics are extremely flexible and can be created on the fly.
MQTT Connection Information
Below is all basic information that is necessary to connect to a MQTT broker from a MQTT client.
ClientId
The client identifier (short ClientId) is an identifier of each MQTT client connecting to a MQTT
broker. As the word identifier already suggests, it should be unique per broker. The broker uses
it for identifying the client and the current state of the client. If you don’t need a state to be
hold by the broker, in MQTT 3.1.1 (current standard) it is also possible to send an empty
ClientId, which results in a connection without any state. A condition is that clean session is true,
otherwise the connection will be rejected.

Clean Session

334

The clean session flag indicates the broker, whether the client wants to establish a persistent
session or not. A persistent session (Clean Session is false) means, that the broker will store all
subscriptions for the client and also all missed messages, when subscribing with Quality of
Service (QoS) 1 or 2. If clean session is set to true, the broker won’t store anything for the client
and will also purge all information from a previous persistent session.

Username/Password
MQTT allows to send a username and password for authenticating the client and also
authorization. However, the password is sent in plaintext, if it isn’t encrypted or hashed by
implementation or TLS is used underneath. We highly recommend to use username and
password together with a secure transport of it. In brokers like HiveMQ it is also possible to
authenticate clients with an SSL certificate, so no username and password is needed.

Will Message
The will message is part of the last will and testament feature of MQTT. It allows to notify other
clients, when a client disconnects ungracefully. A connecting client will provide his will in form of
an MQTT message and topic in the CONNECT message. If this clients gets disconnected
ungracefully, the broker sends this message on behalf of the client. We will talk about this in
detail in an individual post.

Keep Alive
The keep alive is a time interval, the clients commits to by sending regular PING Request
messages to the broker. The broker response with PING Response and this mechanism will allow
both sides to determine if the other one is still alive and reachable. We’ll talk about this in detail
in a future post.
Publish Functionality
After a MQTT client is connected to a broker, it can publish messages. MQTT has a topic-based
filtering of the messages on the broker, so each message must contain a topic, which will be
used by the broker to forward the message to interested clients. Each message typically has a
payload which contains the actual data to transmit in byte format. EZRack PLC MQTT Publish
sends the data in basic text with time stamp included. Below is some more information on the
message attributes:

Topic Name
A simple string, which is hierarchically structured with forward slashes as delimiters. An example
would be “myhome/livingroom/temperature” or “Germany/Munich/Octoberfest/people”.

QoS
A Quality of Service Level (QoS) for this message. The level (0, 1 or 2) determines the guarantee
of a message reaching the other end (client or broker).

335

Retain-Flag
This flag determines if the message will be saved by the broker for the specified topic as last
known good value. New clients that subscribe to that topic will receive the last retained
message on that topic instantly after subscribing.

Payload
This is the actual content of the message. EZRack PLC MQTT Publish sends the data in basic text
with time stamp included.

Packet Identifier
The packet identifier is a unique identifier between client and broker to identify a message in a
message flow. This is only relevant for QoS greater than zero. Setting this MQTT internal
identifier is the responsibility of the client library and/or the broker.

DUP flag
The duplicate flag indicates, that this message is a duplicate and is resent because the other end
didn’t acknowledge the original message. This is only relevant for QoS greater than 0. This
resend/duplicate mechanism is typically handled by the MQTT client library or the broker as an
implementation detail.

336

Subscribe Functionality
Publishing messages doesn’t make sense if no one ever receives the message, or, in other
words, if there are no clients subscribing to any topic. A client needs to send a SUBSCRIBE
message to the MQTT broker in order to receive relevant messages. A subscribe message is
pretty simple, it just contains a unique packet identifier and a list of subscriptions.

Packet Identifier
The packet identifier is a unique identifier between client and broker to identify a message in a
message flow. This is only relevant for QoS greater than zero. Setting this MQTT internal
identifier is the responsibility of the client library and/or the broker.

List of Subscriptions
A SUBSCRIBE message can contain an arbitrary number of subscriptions for a client. Each
subscription is a pair of a topic topic and QoS level. The topic in the subscribe message can also
contain wildcards, which makes it possible to subscribe to certain topic patterns. If there are
overlapping subscriptions for one client, the highest QoS level for that topic wins and will be
used by the broker for delivering the message.

337

8.7 EZ-IIoT Subscriber Utility
The data EZRack PLC publishes to the broker is accessible through any third party subscriber
utility but EZ Automation has created its own take on this utility. The EZAutomation subscriber
utility is developed to make it very easy to see current updated information as well as store any
previously published information. This utility will data log any MQTT messages that it sees when
subscribed to the broker.

8.7.1 Install EZ-IIoT Subscriber Utility
The EZ-IIoT Subscriber Utility is a separate setup which can be downloaded from
www.EZAutomation.com. The EZ-IIoT Subscriber Utility can be installed on any computer that
the EZRack PLC Designer Pro can and at least 2 MB of free space on hard drive for installation.
Follow directions below to setup the utility.

1. Download the EZ-IIoT Subscriber Utility ZIP file from the website.

2. Extract the zip folder to the location where you want to place the utility.
3. The utility will now run. Please follow directions below to setup your broker connection.

Note: The EZ-IIoT Subscriber Utility requires .NET Framework 4.5 which you might need to install
from the Microsoft Windows Website.

http://www.ezautomation.com/

338

8.7.2 EZ-IIoT Subscriber Utility Setup
The EZ-IIoT Subscriber Utility is very easy to setup. The only information needed is listed in the
table below. To setup the utility please follow the instructions below.

Information Type Example Information

Domain Name (Server URI) m12.cloudmqtt.com

Client ID Test-ID0001

User Name TEST

Password AVG123

Port Number 16581

1. Open the EZ-IIoT Subscriber Utility. In the projects are click the “Add” button.

2. In the new connection enter the

information from the broker. The example
shown uses the example information in
the table above. You can also rename the
project in the Broker Setup window.

339

3. Click the “Save Changes”. You will now have the Connect option in the information
below. Use the “Connect” button to connect to your broker.

4. As soon as you are

connected the
Project will turn
green. Now in the
Setup tab go to the
Subscriptions tab.
Click the Update
Topics to get the
topics you have

access to. This will

only retrieve topics

that have been

published with the

'Retain Flag' set to

true AND have been published at least once. If this is not true you can add any topic
you would like. Then select Topics you would like to subscribe to. Once select the topic
is subscribed and you will now be updated in the History tab about its value. Please see
the next section for the full functionality of the Utility.

340

8.7.3 EZ-IIoT Subscriber Utility Functions
The EZ-IIoT Subscriber Utility has 5 tabs total for its full functionality. This section will go through
the 5 tabs and list its functionality. There are 2 main tabs (Dashboard, History) and 3 setup tabs
(Broker, Subscriptions, and File).

Connection Status
The connection status is visible in all tabs and allows the user to connect and disconnect from
the broker. It also lists the current history count and when the last message was received. If
there are any errors they will also be listed here.

Projects List

The project list allows switching between all the different

connection setups. Only one connection can be connected at a

time. New connection can only be added when you are
disconnected from the broker. The green light indicates which
project/connection is actively connected to a broker.

Use the Add and Delete buttons to add and delete connections
when not connected to broker.

341

Dashboard Tab
The dashboard is the main view screen for any Project / Connection. It allows the user to have
an overview of this broker connection and monitor any important topics.

Dashboard Highlighted Topics
Any topic added to the dashboard will have a box
appear where the current status / value can be
monitored. This box will list the topic name at the top.
The last received value is the value in the middle.
Finally it will list the publish time and Utility receive
time at the bottom. To eliminate this topic from the
dashboard use the X or the Remove All option.
Eliminating the topic from the dashboard does not

unsubscribe. Note: Each time a new message is received for this topic it will flash to indicate
status change.

Tab Navigation

Topic Information (See Subscription Tab)

Project/Connections Name

Removes all topics from
dashboard. Does not unsubscribe.

Use this to add important topics to the
dashboard to monitor its value and status.

Each individual topic added to dashboard
will have its information box. See below
for more information.

Value

Date and Time published

Date and Time received

342

History Tab
The history tab lists all the received values from all subscribed topics. Filters exist to navigate
and narrow down information. Also the history can be cleared. The connection status area will
list the total count of received values from all topics listed in the history tab. The history can be
saved manually but it is also saved automatically (please see Setup > File Tab for more
information).

History Information
Unique ID – Each received message will have a unique ID number per connection which can be
used to reference the received message. It can be used to search in the .csv file as well.

Received At – This is the time and date that the message was received by the Utility.

Topic – The subscribed topic name.

Tab Navigation Project/Connections Name

Enable/Disable Filter
Use Add Filter to Topics to create
Filter (Please see next page for
more information)

Manually Save Current
History in new .csv file

Clear History
(does not clear saved .csv file)

343

Broker Sent At – When the publisher sent the message to the broker. Can be incorrect if
publisher (EZRack PLC) has wrong date and time.

Message – The actual message. The utility is formatted to expect EZRack PLC format of
messages. The EZRack PLC messages are formatted to include the Time Stamp of when the
message was sent and then the message value. The EZRack PLC publish format is “TimeStamp,
Value”. Example below:

Received message: 1501073628, 291
The corresponding history result is:
Broker Sent At: 7/26/2017 12:53:48
Message: 291

QoS – Quality of Service from the publisher. Set on the publisher (EZRack PLC) side.

Retained Flag – This will tell you if it is a currently published message or if it is a retained
message. The message will say “NO” for retained flag if you are subscribed while it is published.
Otherwise if the message is set on the publisher side as retained you will receive the message as
soon as you subscribe. Please see example below:

Event 1:
Utility: Subscribes
Publisher: Publish Message 1 with Retain Message set
Utility: Message 1 received and has “NO” for retained flag

Event 2:
Publisher: Publish Message 2 with Retain Message set
Utility: Subscribes
Utility: Message 2 received and has “YES” for retained flag

Note: Retain flag will not be “YES” unless the message was published before the user subscribed

Dup. Flag – The duplicate flag will be set to “YES” if the message has been received more then
once by the Broker.

Topic Filter

344

The Topic Filter can be used to filter by
different topics. Use the keyword selector to
search for needed topics. Then select the
topics you would like to see when filter is
enabled. Click “OK” to finish setting up filter.

On the main screen use enable filter to see
only previously selected topics.

345

Setup Broker
This tab is used to configure the broker information before connecting to the broker. Please see
the setup instructions in the previous section for more information.

Note: You cannot connect with the new settings until you save changes.

Tab Navigation

Setup Navigation

Needed Broker Information
(Please see setup section)

Select this if you would like to
Unsubscribe from all topics when
you Disconnect from the Broker

Make sure to save
changes before
connecting

346

Setup Subscriptions
This tab is used to subscribe to different topics. This tab is only available when connected to the
broker. You can either add a topic or subscribe to topics that already exist on the broker. Use
the filter to narrow down the topics you would like to work with.

How to Subscribe to a Topic

To subscribe just check the box next to the Topic you would like to subscribe to. You can change
the Quality of Service (QoS) for communication between utility and Broker for that topic at any
time by using the dropdown (QoS of 1 or 0 allowed). Also you can subscribe to all visible topics
by using the check box next to QoS.

Tab Navigation

Setup Navigation

Subscribe all
visible topics

Enable/Disable Filter
Use Add Filter to Topics to create
Filter (Please see next page for
more information)

347

Update Topics
The update topics will download all topics that exist as retained messages on the broker. Only
the topics that you have permission to see will be downloaded. You can also add any topics you

would like at any time. This will only retrieve topics that have been published with the 'Retain

Flag' set to true AND have been published at least once.

Remove Unsubscribed
The remove unsubscribed option will delete all unsubscribed topics currently visible in the
Subscription window.

Delete
You can delete individual topics by right clicking on topic and selecting the delete option.

Add Topic

You can at any point add a topic to subscribe to by typing in the topic and pressing Add Topic.
Note: you will need to do this for any topic which does not have a retained flag since the
update topics will not populate the list with these.

Topic Filter

The Topic Filter can be used to filter by
different topics. Use the keyword selector to
search for needed topics. Then select the
topics you would like to see when filter is
enabled. Click “OK” to finish setting up filter.

On the main screen use enable filter to see
only previously selected topics.

348

Setup File
This tab is used to configure how the Utility will save the messages it has received. Here you can
name the save file and change the save folder. You can also configure conditions of saving and
when a new file is created.

Note: The newest data will always be saved in the Base Name .csv file. If new files are created
then data is either saved in files with the date and time appended. Or if that format is not used
the oldest files will be in “Base Name1.csv”, second oldest in “Base Name2.csv”. Also if the Base
Name is open in excel, write is not possible so a new file with name “Base Name_.csv will be
created.

Tab Navigation

Setup Navigation

Use this to set the
name of the .csv
and where it will
be saved

These settings are used when Saving Action
is set to Automatic. Use these settings to set
when a new file is created and how it will be
named.

Make sure to save changes since
changes are not implemented till
they are saved.

Select whether history is
saved automatically or you
need to save manually

349

8.7.4 EZ-IIoT Subscriber Utility Best Practices
This section will mention some common best practices when using the EZ-IIoT Subscriber Utility.

Utility Use
Recommended uses of this utility (can be used for multiple purposes at same time):

 Monitor tags – This utility can be used to monitor about 4-10 tags from the dashboard.

 Data Log – When this utility is subscribed it can be used to data log tag values for later
analysis. Note: it is stored as a .csv file.

 Check Status – This utility can also be used to just check status of machine periodically
by subscribing to see current status.

 Troubleshoot – This utility can also be used to see tag values for off-site troubleshooting
capability.

CSV Files
When looking at saved history (data logging) in the CSV files the best way to view is to create a
copy and then view in excel. If the CSV is open in excel the utility can write to it and will create a
new file. Also note the oldest data will have a unique ID of 0 and the newest will have the
highest value unique ID.

Client ID
Please make sure to use different Client IDs for each subscriber. If the same client ID is used for
multiple subscribers only 1 will ever be able to connect to the Broker at a time. If the client IDs
are different all subscribers up to your broker limit can connect to the Broker at the same time.

Username and Password
Each username and password can be limited to only certain topics thereby allowing users
specific access to needed information. Therefore it is best to create a different username and
password for each user. A username and password can be used in multiple locations to connect
at the same time but it is not recommended.

EZ-IIoT Subscriber Utility Acceptable Data Format

The EZRack PLC publish format is “TimeStamp, Value”. The EZ-IIoT Subscriber Utility expects
data in this format. Example below:

Received message: 1501073628, 291
The corresponding history result is:
Broker Sent At: 7/26/2017 12:53:48
Message: 291

350

Chapter 9: EtherNet / IP

In this Chapter…
9.1 EtherNet/IP Basics .. Error! Bookmark not defined.

9.1.1 Implicit vs Explicit Messaging ... Error! Bookmark not defined.
9.1.1 Explicit Messaging Details .. Error! Bookmark not defined.
9.1.3 Implicit Messaging Details ... Error! Bookmark not defined.

9.2 EtherNet/IP Adapter Setup ... Error! Bookmark not defined.

9.2.1 EZRack PLC Setup ... Error! Bookmark not defined.
9.2.2 Allen-Bradley Setup ... Error! Bookmark not defined.
9.2.3 Troubleshooting ... Error! Bookmark not defined.

9
EZAutomation

351

9.1 EtherNet/IP Basics
EtherNet/IP is an industrial network protocol talks Common Industrial Protocol (CIP) over
Ethernet. It is most often used with Allen-Bradley Rockwell devices and industrial equipment
meant to interface with those devices. EtherNet/IP uses both of the most widely deployed
Ethernet standards (Internet Protocol suite and IEEE 802 project) to define the features and
functions of its transport, network, data link and physical layers. EtherNet/IP uses the CIP object
model framework for its communication. The object-oriented design of CIP provides EtherNet/IP
with the services and device profiles needed for real-time control applications and to promote
consistent implementation of automation functions across a diverse ecosystem of products.

9.1.1 Implicit vs Explicit Messaging
EtherNet/IP supports two types of communication. First is the explicit messaging which where

each communication is a separate query and response. This communication is inherently slower

than the implicit communication because each “packet” requires overhead information about

what you need from which device. On the other hand implicit communication is where a link

between devices is established initially and from that point forward all specified information is

exchanged at set intervals.

Each of these communication is used for different applications and purposes. The selection of

explicit or implicit messaging often depends on the choice of device, as each may support only

one messaging mode. If your application requires large amounts of data, explicit messaging is

the preferred choice because bandwidth is saved, as data is only requested when necessary.

The table below gives a small overview of the uses, please refer to the next page for more

information.

EtherNet/IP
Connection

Explicit Message
Description

Implicit Message
Description

Initiates Connection (Master) Client (Controller) I/O Scanner (Controller)
Services Connection (Slave) Server (Field Device) I/O Adapter (Field Device)
Messaging type Unconnected but can be connected Connected
Typical Use Diagnostic / Event data Real-time I/O data (Control)

352

9.1.1 Explicit Messaging Details
Explicit messaging (client/server messaging) is best used for non-real time communication which

is not time critical. In this type of messaging the client (PLC / Controller) requests information

from the server (Field Device) and the server sends the requested information back to the client.

Since the client request the information via TCP/IP services, the message needs to include all the

information so that the server can respond explicitly to the message. The client will basically say

to server, “I need this information, with this specified formatting, please send it”. The server

then responds with a correctly formatted message with the information.

This configuring and monitoring ability works well for non-real time messaging as the client can

send a message request anytime, and the server can respond when it is available. Due to this

explicit messaging requires programming in the controller for setup. You need to request the

data, add handshaking, acknowledge the data, and move the data where it’s needed in the

controller.

353

9.1.3 Implicit Messaging Details
Implicit messaging (I/O Messaging) is used for time-critical applications such as real time control.
Implicit messaging is called I/O messaging it is frequently used for remote I/O applications. This
communication is much more efficient than explicit messaging since but the scanner and
adapter are preconfigured to know exactly (implicitly) what to expect from this communication.

Implicit messaging basically copies a set amount of data with minimal other information into the
message. Both the scanner and adapter don’t need to be told much since they both know what
to expect in the message and what to send back. The meaning of the data is “implied” so there
is no extra stuff.

Also the setup of implicit messaging is simple and quick. The scanner only needs to be setup to
know what data it should receive and send, and which EtherNet/IP device it needs to connect
to. After that the data is transferred at the rate you specify, typically in the 5ms to 20ms range.

354

9.2 EtherNet/IP Adapter Setup
The EZRack PLC supports Ethernet/IP Adapter communication. This communication is for the
EZRack to act as Adapter to external device Scanner. This section will define how to setup the
EZRack PLC and how to setup an Allen-Bradley PLC to act as Scanner to the EZRack PLC.

9.2.1 EZRack PLC Setup
To setup the EZRack to communicate as an Ethernet/IP Adapter follow the direction below:

1. Go to Setup > EtherNet/IP Adapter Setup... You will see the following screen appear:

355

2. This screen allows you to setup which tags are to be used for the Adapter. You can
either use a contiguous block of registers (example R1-R250) or you can select the
registers you would like to send. The maximum number is restricted to 250 Input and
250 Output.

3. Important information for the setup of Scanner is the Connection Parameters of the
Input / Output Assembly Instances and the Input / Output Word size. Make sure to
setup this information in your Allen-Bradley PLC after you have selected all tags that you
will send and receive.

System Discretes:

_SD_EIP_SCANNER_CONNECTED SD26 Read
Only

Indicates when the EtherNet/IP Adapter is connected with an
EtherNet/IP Scanner.

_SD_EIP_SCANNER_TIMEOUT SD27 Read
Only

Indicates when the EtherNet/IP Adapter connection times out
(after 3000 mSec)

System Registers:

_SR_EIP_SCANNER_IP1 SR21 Read Only This will have the IP address of the EtherNet/IP Scanner which is
connected to the EZ Rack PLC.

_SR_EIP_SCANNER_IP2 SR22 Read Only This will have the IP address of the EtherNet/IP Scanner which is
connected to the EZ Rack PLC.

_SR_EIP_SCANNER_IP3 SR23 Read Only This will have the IP address of the EtherNet/IP Scanner which is
connected to the EZ Rack PLC.

_SR_EIP_SCANNER_IP4 SR24 Read Only This will have the IP address of the EtherNet/IP Scanner which is
connected to the EZ Rack PLC.

356

9.2.2 Allen-Bradley Setup
To setup an Allen-Bradley PLC to communicate to the EZRack PLC please use RSLogix 5000.

1. In the selected project under your Ethernet option click to Add New Module.

2. In the Select Module Type find the Generic Ethernet Module. Select this module and the
following dialog will show up:

3. Add a name for your module and put in the Comm Format as Data INT. Also put in the

IP Address of your EZRack PLC.

357

4. Copy the Connection Parameters from the EZRack PLC to the Connection Parameters of
the New Module. Set the Assembly Instance Configuration to 1.

5. Click OK to create the module. In the Connection settings please use an RPI of 10 ms or
more. A faster RPI does work but is not as reliable. You can also choose to use any of the
other settings all function with the EZRack PLC.

6. After hitting apply you have created a connection between the EZRack PLC and the
Allen-Bradley PLC. As soon as both projects are transfered to their respective PLCs they
will communicate together and exchange the selected tag information. Note: Allen-
Bradley tags will be in the Controller Tags area under the name of the Generic Ethernet
Module.

358

9.2.3 Troubleshooting
If the EZRack PLC and Allen-Bradley PLC are not communicating or having trouble
communicating the Module Fault will inform you as to the problem. Please see table below for
the options:

Error Error Code
(HEX)

Problem

Connection Request
timed out.

0204
The Allen-Bradley PLC cannot connect to the EZRack PLC.
Please make sure the IP address is correct and the EZRack PLC
is on the same network as the Allen-Bradley PLC.

Invalid segment type 0315
The Connection Parameters information is incorrect. Please
check and make sure both PLCs parameters match.

359

Chapter 10: EZRack Modules
In this Chapter…
10.1 Basic Modules .. 360
10.2 Specialty Modules .. 366

10.2.1 High Speed Counter (EZRPL-IO-HSCNT) .. 367
10.2.2 Resistance Temperature Detector Module (EZRPL-IO-4RTD) 376
10.2.3 Thermocouple Modules (EZRPL-IO-4THIE) ... 379

10

0

EZAutomation

360

10.1 Basic Modules
The EZRack PLC has many different IO modules. Most IO modules are plug and play with the only
configuration needed is for the EZRack Designer Pro to be configured to communicate with
them, please see Section 2.5.8 for IO Configuration instructions. There are some modules that
do need additional setup, for this please refer to the next section in this chapter. For more
detailed information about each modules please see the Hardware Manual or refer to the
Module Specifications that can be found online at www.EZAutomation.net. The pinouts for
modules are included below for convenience.

DC Inputs / Outputs

P
in

16DCI 16DCON 16DCOP 8DCOP-HC

P
in

1 INPUT-1 +VS-1 +VS-1 VS+1 1

2 INPUT-2 OUTPUT-1 OUTPUT-1 OUT-1 2

3 INPUT-3 OUTPUT-2 OUTPUT-2 COM-1 3

4 INPUT-4 OUTPUT-3 OUTPUT-3 OUT-2 4

5 COM-1 OUTPUT-4 OUTPUT-4 COM-1 5

6 INPUT-5 OUTPUT-5 OUTPUT-5 VS+2 6

7 INPUT-6 OUTPUT-6 OUTPUT-6 OUT-3 7

8 INPUT-7 OUTPUT-7 OUTPUT-7 COM-2 8

9 INPUT-8 OUTPUT-8 OUTPUT-8 OUT-4 9

10 COM-2 COM-1 COM-1 COM-2 10

1 INPUT-9 +VS-2 +VS-2 VS+3 1

2 INPUT-10 OUTPUT-9 OUTPUT-9 OUT-5 2

3 INPUT-11 OUTPUT-10 OUTPUT-10 COM-3 3

4 INPUT-12 OUTPUT-11 OUTPUT-11 OUT-6 4

5 COM-3 OUTPUT-12 OUTPUT-12 COM-3 5

6 INPUT-13 OUTPUT-13 OUTPUT-13 VS+4 6

7 INPUT-14 OUTPUT-14 OUTPUT-14 OUT-7 7

8 INPUT-15 OUTPUT-15 OUTPUT-15 COM-4 8

9 INPUT-16 OUTPUT-16 OUTPUT-16 OUT-8 9

10 COM-4 COM-2 COM-2 COM-4 10

http://www.ezautomation.net/

361

AC Inputs / Outputs

P
in

4ACI4ACO 8ACI 8ACO

P
in

1

4
 X

 2
 L

ED
S

4
 X

 2
 L

ED
S

4
 X

 2
 L

ED
S

1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

1 INPUT-1 INPUT-1 OUTPUT-1 1

2 INPUT-2 INPUT-2 OUTPUT-2 2

3 INPUT-3 INPUT-3 OUTPUT-3 3

4 INPUT-4 INPUT-4 OUTPUT-4 4

5 INPUT-COM COM-1 COM-1 5

6 OUTPUT-1 INPUT-5 OUTPUT-5 6

7 OUTPUT-2 INPUT-6 OUTPUT-6 7

8 OUTPUT-3 INPUT-7 OUTPUT-7 8

9 OUTPUT-4 INPUT-8 OUTPUT-8 9

10 OUT-COM COM-2 COM-2 10

362

AC/DC IO (Relay Outputs)

P
in

4DCOP4RLO 8RLO

P
in

1 VS+ NO-1 1

2 DCOP-1 COM-1 2

3 DCOP-2 NC-1 3

4 DCOP-3 NO-2 4

5 DCOP-4 COM-2 5

6 VS-COM NC-2 6

7 Not Used NO-3 7

8 NC-1 COM-3 8

9 COM-1 NO-4 9

10 NO-1 COM-4 10

1 NC-2 NO-5 1

2 COM-2 COM-5 2

3 NO-2 NC-5 3

4 NC-3 NO-6 4

5 COM-3 COM-6 5

6 NO-3 NC-6 6

7 NC-4 NO-7 7

8 COM-4 COM-7 8

9 NO-4 NO-8 9

10 Not Used COM-8 10

363

Analog Inputs / Outputs

P
in

8ANI4ANOV-16BIT 8ANI4ANOC 8ANI4ANOV

P
in

1 OUT-1 OUT-1 OUT-1 1

2 OUT-2 OUT-2 OUT-2 2

3 OUT-3 OUT-3 OUT-3 3

4 OUT-4 OUT-4 OUT-4 4

5 COM COM COM 5

6 IN-1 IN-1 IN-1 6

7 IN-2 IN-2 IN-2 7

8 IN-3 IN-3 IN-3 8

9 IN-4 IN-4 IN-4 9

10 COM COM COM 10

1 IN-5 IN-5 IN-5 1

2 IN-6 IN-6 IN-6 2

3 IN-7 IN-7 IN-7 3

4 IN-8 IN-8 IN-8 4

5 COM COM COM 5

6 Not Used Not Used Not Used 6

7 Not Used Not Used Not Used 7

8 Not Used Not Used Not Used 8

9 VS+ VS+ VS+ 9

10 VS-COM VS-COM VS-COM 10

364

Temperature Modules

P
in

8RTD 4THIE

P
in

1 CH-1 (+) IN-1+ 1

2 CH-1 (-) IN-1- 2

3 COM-1 Not Used 3

4 Not Used IN-2+ 4

5 CH-2 (+) IN-2- 5

6 CH-2 (-) Not Used 6

7 COM-2 IN-3+ 7

8 Not Used IN-3- 8

9 Not Used Not Used 9

10 Not Used Not Used 10

1 CH-3 (+) IN-4+ 1

2 CH-3 (-) IN-4- 2

3 COM-3 Not Used 3

4 Not Used CJC- V+ 4

5 CH-4 (+) CJC-VOUT 5

6 CH-4 (-) CJC-GND 6

7 COM-4 Not Used 7

8 Not Used Not Used 8

9 VS+ VS+ 9

10 VS-COM VS-COM 10

365

Specialty Combo

P

in

HSCNT 6DI4DO-2ANI2ANO

P
in

1 VS+ DO-1 1

2 Not Used DO-2 2

3 OUT-1 DO-3 3

4 Not Used DO-4 4

5 OUT-2 COM 5

6 Not Used DI-1 6

7 OUT-3 DI-2 7

8 Not Used DI-3 8

9 OUT-4 DI-4 9

10 VS-COM DI-5 10

1 CNT-1-EN DI-6 1

2 CNT-1-RST DI-COM 2

3 CNT-1-A AO-1 3

4 CNT-1-B AO-2 4

5 COM COM 5

6 CNT-2-EN AI-1 6

7 CNT-2-RST AI-2 7

8 CNT-2-A COM 8

9 CNT-2-B VS+ 9

10 COM VS-COM 10

366

10.2 Specialty Modules

The EZRack PLC Designer Pro includes some modules which need more advanced setup for ease
of use. Please see this section to know how to setup these modules correctly. Below there is a
basic summary of the modules and their functionality.

EZRPL-IO-HSCNT
High Speed Counter Module
The HSCNT module is the module used when interfacing EZRack PLC with an encoder device.
This modules has two counters that count at up 100 KHz and has settings to count 1X, 2X, or 4X
Quadrature and Up or Down Counter. The modules also includes a physical reset and a physical
enable. Finally it has 2 outputs per counter for PLS style control.

EZRPL-IO-4RTD
Resistance Temperature Detector Module
The RTD module is one of the temperature detection modules for the EZRack PLC. This modules
works with the Pt100, 120 Ni, and 10 Cu / 25 Cu RTD sensor wires. This modules is used at lower
ranges when a more consistent temperature reading is needed. When comparing RTD to THIE,
the RTD will always be more consistent with its readings at the same temperatures.

EZRPL-IO-4THIE
Thermocouple Input Module
The THIE module is one of the temperature detection modules for the EZRack PLC. This modules
works with the most of the different Thermocouple wires including Type J, Type K, and etc. This
module is used when a larger temperature range is needed. When comparing THIE to RTD, the
THIE will have a greater temperature range then the RTD.

367

10.2.1 High Speed Counter (EZRPL-IO-HSCNT)
EZRack PLC offers High Speed counters with two 24-bit counters. The counters accept input
from quadrature encoders and offer features to multiply counts by 2 or 4.

In addition, modules offer programmable set points and outputs to create high speed
Programmable Limit Switch type of outputs.

Wiring Diagram

Note: Use Counter RST connection for preset signal.

368

Outputs

Setpoint Output (Wiring Diagram) Indicator (Output Status Word)

Counter 1 Setpoint 1 Output 1 Bit 0 (LSB)

Counter 1 Setpoint 2 Output 2 Bit 1

Counter 2 Setpoint 1 Output 3 Bit 2

Counter 2 Setpoint 2 Output 4 Bit 3

HSCNT I/O Configuration
To setup the module in EZRack PLC, follow these steps:

1. In I/O configuration select a HSCNT module you are going to use, as shown below:

Note: You can also use the Auto Configure option.

369

2. The module uses 5 input registers (memory type IR). It also use 21 output registers
(memory type OR). You can assign a desired starting Input Register and Output Register
addresses. Note: The maximum number of OR registers is 64 therefore up to 3 HSCNT
can be used.

3. Next click on “Click to define setup parameters. Following dialog comes up:

370

4. In the Counter 1 and
Counter 2 tabs you can
define the Count and
Preset Mode. Also you
can set the set points
for the Programmable
Limit Switch type of
outputs. And finally you
can set the preset
value. Note: Please see
below for more
information on these
settings.

5. The Output Register's
Information tab will tell
you how to configure
your module through tags. Use the corresponding tags and information to set the
counter you would like to the settings you want.

6. Finally the Input
Register's Information
tab will tell you the
functionality of the
input registers.

371

Settings

Count Mode
The Counter Module supports 5 Counting Modes as described below. Select the desired mode.
As shown in the dialog box, bits b2-b0 of the configuration register stores the count mode of the
counter.

Quadrature Counting

Quadrature x1 - This mode will give 1 count for every quadrature period. Count rising edge only
of signal A.

Phase relation of A & B determines the direction.

Quadrature x2 - This mode will give 2 counts for every quadrature period, giving the user twice
the resolution of 1X.Count rising and falling edges of A.

Phase relation of A & B determines the direction.

372

Quadrature x4 - This mode will give 4 counts for every quadrature period, giving the user twice
the resolution of 2X.Count both edges of A and B.

Direction is determined by the phase relation of A & B.

Pulse and Direction Counting

Count Rising Edges
This mode only counts Signal A. The signal from B establishes the direction.
This mode will count for the rising edge of Signal A from Encoder 1.
If direction is high, then the counter will be incremented by 1.
If direction is low, then the counter will be decremented by 1.

Count only rising edges.

Count Both Edges
This mode only counts Signal A. The signal from B establishes the direction.
This mode will count the rising and falling edge of Signal A from Encoder 1, giving the user twice
the resolution of the "Count Rising Edges" mode.
If direction is ‘1’, then the counter will be incremented by 1.
If direction is ‘0’, then the counter will be decremented by 1.

Count both rising and falling edges.

373

Set Point (1-4)
The Counter Module provides 4 programmable Limit Switch Outputs.

Please enter the ON & OFF values for each of the setpoints.
The dialog box shows the registers used for setpoints.
Each setpoint controls a corresponding output on the module.

E.g. Setpoint 1 controls Output 1.
Output 1 is ON when the count value is greater than or equal to the ON value, but is less than
the OFF value.
Each value is a 24-bit value but takes up two 16-bit registers.

Output = ON if ON Value <= OFF Value

Preset Value
When the preset input is triggered (see preset mode below), the value in the Value (Long) field
will replace the current count of Counter 1.
The count then starts with this value. Preset is a 24 bit value, but takes up 2 16-bit registers.

374

Preset Mode
As shown in the dialog box, preset mode is saved in bits b7 and b6 of the Counter configuration
register. The preset mode can be set differently for both counters and each counter has its own
preset/reset connection pin. Settings exist for both Counter 1 and Counter 2. Counter 1 uses bits
6, 7 and counter 2 uses bits 8, 9 of the config register. Note: Use Counter RST connection for
preset signal.

High
This option will set the counter to the preset value while being held high.
While the preset signal is high, no new count signals will be counted.

On Rising Edge

This option will preset on the rising edge of the preset signal.

On Falling Edge

This option will wait for the falling edge of the preset input to trigger a preset pulse.

375

Preset High AND Counter 1 A Input

This option triggers a preset pulse every time that there is a rising edge Signal A and the preset
signal is high. The count stays at preset till the preset signal goes low.

376

10.2.2 Resistance Temperature Detector Module (EZRPL-IO-4RTD)
EZRack PLC IO family offers a four point RTD Input Module for connecting to popular RTDs
(Resistance Temperature Detectors).
The module has following features:

1. 4 Differential Inputs that support PT100, Ni120 & Cu10 RTD's or direct resistance
measurement.

2. Common mode rejection 100 Db minimum.
3. Accuracy ±15ppm/°C
4. Resolution ±0.1°C (0.1 ohm per count for resistance measurement)

Wiring

Important Note:
Keep the wires of same type and length.

Shield and drain wire
cannot be used for
third connection.

In case of four-wire
RTD type, extra plus
Sense wire should
not be connected.

377

RTD I/O Configuration
To setup the RTD module in EZRack PLC, follow these steps:

1. In I/O configuration select a 4 RTD Inputs module (EZIO-4RTD) as per the type of sensor
(Pt100/Ni120/Cu10, or Resistance if you want to read resistance in ohms)) you are going
to use, as shown below:

Note: You can also use the Auto Configure option and then select the correct wanted RTD
module.

2. The module uses 4 input registers (memory type IR). Assign a desired starting Input
Register addresses:

The starting Input Register is used for Input
1, the next for Input #2, etc. For example
if the starting input address is IR1, then
reading from RTD at input # 1 would be
returned in IR1, from #2 in IR2, from #3 in
IR3, and from #4 in IR4.

3. Click on Apply Changes button and
close the Add/Edit I/O Module window.

378

Tag Data Types
In EZRack PLC the ladder logic accesses memory using tags. Therefore create tags for each of
the Input Register (IR) associated with the module. Each tag has a data type to interpret the data
values appropriately.

Please follow below given guidelines for the tag data types for the module:

Tags associated with the Input Registers (IR) must be of SIGNED_INT_16 for the RTD modules.

RTD Type selected Use Tag data type

Pt100, Ni120, Cu10 SIGNED_INT_16

Resistance UNSIGNED_INT_16

Temperature Values
The thermocouple module provides temperature values with one digit after the decimal point.
However these values are presented as whole integer numbers, not as floating point or real
numbers. The decimal point is implied. Thus if a reading from the module is 1234, it should be
interpreted as 123.4, or alternately if the temperature is 234.5 degrees (C or F or K), the input
register would return a value of 2345.

379

10.2.3 Thermocouple Modules (EZRPL-IO-4THIE)
EZRack PLC IO family offers a Thermocouple Module which can work with any type
Thermocouples after setup. Please see below for information on setup.

The module has following features:

1. Up to 4 thermocouple inputs with user selectable thermocouple types on each input
2. User programmable broken thermocouple detection
3. User programmable units for temperature -- Centigrade, Fahrenheit or Kelvin
4. Automatic Cold Junction Compensation (CJC) with Internal or External Sensor

Wiring

Note: Only 3 thermocouple inputs are available when External CJC is used.

380

Which CJC Sensor, internal or external, to use?
The module provides automatic cold junction compensation (CJC). It can use internal or external
temperature sensor for this purpose. With both sensor types, the module provides very
repeatable temperature readings. You may select internal or external based on below given
guidelines:

Use Internal CJC Sensor: If you need repeatable but not very accurate readings (typical +/- 6 deg
C). This allows you to use 4 thermocouples with the module. Internal sensor is automatically
used if external sensor is not selected for input #4.

Use External CJC Sensor: If you need repeatable as well as more accurate (max +/- 3 deg C)
readings. You will need to use LM19 temperature sensor, and you can use only 3
thermocouples. Note: To use External Sensor, select “CJC Sensor (LM19)” for Input #4 type, in the
configuration dialog box. (see below).

381

Type of Thermocouple & ranges supported, and error values:

Thermocouple
type

Range
Value reported with Open
Thermocouple or incorrect
configuration if option selected is:

 Centigrade Fahrenheit Kelvin
Do not
report

Low Value High Value

J
-210°C to
+1200°C

-346°F to
+2192°F

63°K to
1473°K

Random
-32768 32767

(0x8000) (0x7FFF)

K
-200°C to
+1372°C

-328°F to
+2502°F

73°K to
1645°K

Random
-32768 32767

(0x8000) (0x7FFF)

S
-50°C to
+1768°C

-58°F to
+3214°F

223°K to
2041°K

Random
-32768 32767

(0x8000) (0x7FFF)

T
-200°C to
+400°C

-328°F to
+752°F

73°K to
673°K

Random
-32768 32767

(0x8000) (0x7FFF)

E
-200°C to
+980°C

-328°F to
+1796°F

73°K to
1253°K

Random
-32768 32767

(0x8000) (0x7FFF)

R
-50°C to
+1768°C

-58°F to
+3214°F

223°K to
2041°K

Random
-32768 32767

(0x8000) (0x7FFF)

B
250°C to
+1820°C

482°F to
+3308°F

523°K to
2093°K

Random
0 65535

(0x0000) (0xFFFF)

N
-200°C to
+1300°C

-328°F to
+2372°F

73°K to
1573°K

Random
-32768 32767

(0x8000) (0x7FFF)

Ambient Temp
This selection would read module's
ambient temperature

Thermocouple Module Setup
To setup the module in the EZRack PLC, follow these steps:

1. In I/O configuration select “4 Enhanced Thermocouple Module (EZLGX-IO-4THIE) as
shown below, and assign desired starting Input and starting output addresses:

The module takes up 4 input registers (IRs) and 4 output registers (ORs):

 Input Registers return thermocouple readings.

 Output registers are used for configuration of respective thermocouple.

382

The starting Input Register is used for Input # 1, the next for Input #2, etc. For example if the
starting input address is IR1, then reading from thermocouple at input #1 would be returned
in IR1, from #2 in IR2, from #3 in IR3, and from #4 in IR4. Similarly Starting OR would
configure Thermocouple #1, and next OR would configure Input #2, and so on.

2. Click on “Click to define setup parameters. Following dialog comes up:

383

For each input, select Type of Thermocouple, Unit of measurement, and Option to report error
(such as due to open thermocouple, wrong configuration, etc.). These choices create a config
value that is written to corresponding OR registers when the program is written to EZRack PLC.
These values can also be written or modified using ladder logic, but it may be easier to use the
dialog box. That is all required to setup the module.

Note: If CJC Sensor (LM19) is selected for Input 4 then only 3 thermocouple inputs are available
(Input 1-3).

The programmable parameters, namely type, unit, and report error, as well as the computed
config value, are described below:

Type
Select the type of the thermocouple using this field. The possible choices are: J Type, K Type, S
Type, T Type, E Type, R Type, B Type, N Type, Ambient Type. The display-only range field
depends on the type of the thermocouple selected (along with the unit).

For Input #4 ONLY: If using external sensor for CJC, select “CJC Sensor (LM19)” for Input #4.

Unit
Select the unit for measurement for each thermocouple. The possible choices are: Celsius,
Fahrenheit and Kelvin. The display-only range field depends on the unit selected (along with the
type of the thermocouple).

Report Error
The Report Error function on the thermocouple module provides diagnostic capabilities to
detect open or burnt thermocouple, or incorrect configuration (which can happen if the ladder
logic writes an incorrect value to the config register). The following table describes the choices
and the resulting actions. You can use these values in ladder logic to detect possible problems
with the thermocouples or configurations.

Choice Value Returned
 All types EXCEPT B Type B Type

Do Not Report Indeterminate Indeterminate

Use low value -32768 0

Use high value 32767 65535

384

Config Value
The computed Config Value (determined by above choices) is the value written to the config
(output) register. Each thermocouple input is configured via its config register. The Config Value
Display Format option allows you to display (in this dialog box) the config value in either decimal
or hex. The actual config value depends on the selections made for the type, unit and report
error as shown in the following table:

Bits in Config Registers Determined by Default value

Bit 3 – Bit 0 Thermocouple type 0000 (J -type)

Bit 5 – Bit 4 Unit Selection 00 (Celsius)

Bit 7 – Bit 6 Report-Error Selection 00 (Do not report)

The values of bits for various selections can be seen from the configuration dialog box.

Example:

 Thermocouple Type Unit Selection Report-Error Selection Final Value

Selected
Option

S Type Fahrenheit Use high value 210

Binary
Result

0010 01 11 0000 0000 1101 0010

Thermocouple Module Operation
The Thermocouple provides 4 inputs for thermocouples. Each input can independently be
configured by writing to corresponding configuration register. The configuration can be done
using the dialog box as described above. Alternately the configuration can be done by writing
appropriate values in corresponding Output Registers of the module using ladder logic.

Tag Data Types
The ladder logic in EZRack PLC accesses PLC memory using tag names. Therefore create tags for
each of the Input (IR) and output registers (OR), if used, associated with the module. Each tag
has a data type to interpret the data values appropriately. Please follow below given guidelines
for the tag data types for the module:

Tags associated with the Output Registers (OR) must be declared as UNSIGNED_INT_16

Tags associated with the Input Registers (IR) must be of SIGNED_INT_16 for all thermocouple
types EXCEPT type B in which case it should be UNSIGNED_INT_16.

385

Interpreting Temperature Values
The thermocouple module provides temperature values with one digit after the decimal point.
However these values are presented as whole integer numbers, not as floating point or real
numbers. The decimal point is implied.
Thus if a reading from the module is 1234, it should be interpreted as 123.4, or alternately if the
temperature is 234.5 degrees (C or F or K), the input register would return a value of 2345.

Open Thermocouple detection
Thermocouple module can detect open or burnt thermocouples. On detecting an open/burnt
thermocouple, the module provides a lowest or highest possible value in corresponding Input
Register. The choice of low or high value is user programmable. See configuration dialog box,
and specification to see the values returned for each thermocouple type.

External CJC Sensor Diagnostics
The thermocouple module provides automatic cold junction compensation. User has an option
to use internal (default) or external temperature sensor for this purpose. If external sensor is
not selected in Module setup (see setup section), the internal option is automatically used.

The wiring of the 3-terminal external sensor is shown in wiring section above. The reading in
input-register corresponding to input #4 can be used to detect incorrect wiring of the sensor. If
the reading is above 100 or below 0, the sensor may not be wired correctly.

386

Chapter 11: Sparkplug B (Ignition)
In this Chapter…
11.1 Sparkplug B IIoT (MQTT) Basic Setup ... 387
11.2 Basic Ignition MQTT Modules Setup .. 393
11.3 Advanced Sparkplug Setup (Security and Encryption) ... 394

11.3.1 Encryption and Certificate Basics.. 394
11.3.2 EZRack PLC Encryption and Certificate Authority Setup: .. 396
11.3.3 Ignition Encryption and Keystore Setup ... 397

11.4 Redundancy Setup (EZRack PLC and Ignition): .. 398
11.5 Store and Forward Setup: .. 399

11.5.1 Store and Forward Time Zone Setup .. 400

11.6 Troubleshooting Sparkplug B Setup: ... 402

11
EZAutomation

387

11.1 Sparkplug B IIoT (MQTT) Basic Setup

This setup guide is for using the EZRack PLC with Inductive Automation’s Ignition platform. Using
this guide, the EZRack PLC will be setup to communicate over MQTT to the Ignition platform
using the Sparkplug B specification. This allows the EZRack PLC’s tag to automatically show up in
the Ignition software. Please follow the instructions below to create a basic project that will
communicate to Ignition.

Note: This MQTT communication is for use with the Inductive Automation’s Ignition Platform
with the Cirrus-Link IIoT Modules. For more information please visit
https://inductiveautomation.com/ and http://www.cirrus-link.com/. There is a quick setup guide
for the needed Ignition modules included at the end.

EZRack Sparkplug B Setup

1. Launch the EZRack PLC Designer Pro version 2.1.0 or higher. Note: You will need EZRack

PLC firmware version A.0.297 or higher.

2. On the Project Information screen click the button option “Open / New Project”.

3. Select a project or enter a project name (new project names will create a new project).

You can also configure your I/O if you would like, but it is not needed. Then click the

button “Click to Start Designing”.

https://inductiveautomation.com/
http://www.cirrus-link.com/

388

4. Once the project is open, we will add a contact and coil. In the right side bar click on the

Normally Open Contact and place it down anywhere in the Main Logic area. Next select

a Normally Open Coil and place it down as well.

5. Next double click on the NO Contact and in the next dialogue enter a tag name, for

example OPEN CONTACT. Then click OK.

6. Next do the same for the NO Coil, giving it a different name, for example OPEN COIL.

389

7. Finally make sure that the contacts are connected. If need be use the line option (in top

toolbar) to connect the left side to the NO Contact and the NO Coil. You can also double

click in the ladder logic. Note: You do not need to connect the line all the way to the right

side power rail.

8. Now you will need to setup the sparkplug to communicate to the broker. Please make

sure you have the following information from the Ignition Broker.

Information Type Example Information

User Name to Connect to Broker admin

Password to Connect to Broker changeme

Domain Name (Server URI) or IP Address of
Broker

10.1.200.12

Port Number (TLS or non-TLS) 1883 (TLS 8883)

9. Next open the Sparkplug Setup. It is on the

Navigation window / project tree on the left side. It

is also under Setup > Sparkplug Setup ….

10. In the Sparkplug dialogue box please enter a Client

ID. Note: The Primary Host ID is used for Redundant

Ignition Environment, please see the section on

Redundancy for more information.

390

11. Next you can change the Group ID, Node ID, and Device ID. The final options in the first

tab, if selected, will have the PLC provide some basic info about the CPU and USB to the

Ignition platform.

12. In the Brokers tab

please enter the IP address

of the Broker or use the

Domain Name Lookup to find

the IP address. For the

Domain Name Lookup just

enter the Domain Name and

it will input the needed IP

address.

13. Please enter the Port and set the Keep Alive Interval. Finally enter the Username and

Password for the Broker.

Note: Please refer to the

security section to setup TLS

security.

Note: The EZRack supports

up to 4 different brokers.

Please see the redundancy

section for more

information.

391

14. Finally in the Publish Tags section add the Open Contact and Open Coil tags. Then select

the Open Contact and make it Read/Write. Please see below for button descriptions.

Note: You can also
set the tag to be
stored in case of
Broker connection
loss. Please see the
Store and Forward
section for more
information.

Button descriptions:
a. Add Topic: Use this to add a topic from the Available Tags list (Table on left). If no

tag select then can add a folder (topic).
b. Rename Topic / Metric: Can rename either a topic or even a tag. Note: The name

change does not affect the tag database name of the tag.
c. Remove Topic / Tags: Removes selected topic or tag. If topic removed, it will also

remove any subtopics and tags in the topic.
d. Make Tag(s) Read Only: Makes the tag read only, this means that cannot use

external means to change this tag.
e. Make Tag(s) Read Write: Allows tags to be changed externally. For example Ignition

could now use the open coil tag as a button, instead of just an indicator.
f. Enable Tag(s) Store: Allows redundancy to work with that tag.
g. Disable Tag(s) Store: Disables redundancy to work with that tag.

15. Now go to File > Transfer to PLC. Please make sure you are connected to the PLC and

have the correct PC to PLC Connection.

392

16. Once the project has been transferred and the PLC is running you will now see the tags

in your Ignition Designer software in the tag browser. After enabling Read/Write you

will be able to use the OPEN_CONTACT to turn ON/OFF the OPEN_COIL.

Note: For basic Ignition setup instructions you can see the next section of this Getting
Started Guide or you can visit https://inductiveautomation.com/ and http://www.cirrus-
link.com/ for more information.

For more help on creating logic in the EZRack Designer Pro and other functionality please refer
to the Software Manual or the Software Help File.

https://inductiveautomation.com/
http://www.cirrus-link.com/
http://www.cirrus-link.com/

393

11.2 Basic Ignition MQTT Modules Setup

This section briefly explores how to add to Ignition the Cirrus-Link MQTT modules and where to
find the needed information to setup the EZRack PLC. Please visit
https://inductiveautomation.com/ and http://www.cirrus-link.com/ for more information.
Cirrus Link Needed Modules
Please download the following modules from
https://inductiveautomation.com/downloads/ignition.

 MQTT Distributor Module

 MQTT Engine Module

 MQTT Transmission Module

Adding Needed Modules

1. Go to localhost:8088 and Log into your Ignition Software. Note: This assumes you have

already setup the Ignition platform.

2. Go to the Configure tab and select System > Modules.

3. Scroll all the way down to the bottom of the page and click Install or Upgrade Module.

4. Select the wanted module and click Install. The module will be installed and Ignition will

restart.

5. Repeat for all 3 needed modules.

Cirrus-Link Guide to Using the 3 Modules
https://docs.chariot.io/display/CLD/Getting+Started%253A+Single+Ignition+Architecture
EZRack PLC Information
The above Cirrus-Link Guides explains how to use the 3 Modules and make changes to their
setup. If no changes are made then the default information needed to use with the EZRack PLC
is listed below. This information is changed and modified in the MQTT distributor Module. Note:
If you do modify it then both the MQTT Engine and MQTT Transmission will also need to be
modified.

Information Type Example Information

User Name to Connect to Broker admin

Password to Connect to Broker changeme

Domain Name (Server URI) or IP Address of
Broker

IP address of the computer with Ignition
Running

Port Number (TLS or non-TLS) 1883 (TLS 8883)

https://inductiveautomation.com/
http://www.cirrus-link.com/
https://inductiveautomation.com/downloads/ignition
http://localhost:8088/main/web/home?11
https://docs.chariot.io/display/CLD/Getting+Started%253A+Single+Ignition+Architecture

394

11.3 Advanced Sparkplug Setup (Security and Encryption)
The EZRack PLC supports Encryption and Certificate security. Encryption is used to make sure

that no one can listen to the data the EZRack PLC is sending out to the Broker. The certificate

authentication is used to make sure that the Broker is the one you want. The EZRack PLC will

also support client certificate authentication in the future, where the Broker will be able to tell

that the EZRack PLC is the correct Client.

11.3.1 Encryption and Certificate Basics
When the EZRack PLC attempts to communicate with a Broker over a secure SSL connection, the

PLC and the Broker establish the SSL connection using a process called an “SSL Handshake” (see

diagram below). Note that the SSL Handshake is invisible to the user and happens

instantaneously.

Essentially, three keys are used to set up the SSL connection: the public, private, and session

keys. Anything encrypted with the public key can only be decrypted with the private key, and

vice versa.

Because encrypting and decrypting with private and public key take a lot of processing power,

they are only used during the SSL Handshake to create a symmetric session key. After the secure

connection is made, the session key is used to encrypt all transmitted data.

When using security the process is as follows:

1. The EZRack PLC contacts the Broker and requests it identifies itself.

2. The Broker sends a copy of its SSL Certificate including the Broker’s public key.

3. The EZRack PLC checks the certificate against a list of trusted CAs and that the certificate

is unexpired. If the EZRack PLC trusts the certificate, it creates, encrypts, and sends back

a symmetric session key using the Broker’s public key.

4. The Broker decrypts the symmetric session key using its private key and sends back an

acknowledgement encrypted with the session key to start the encrypted session.

5. The EZRack PLC and Broker now encrypt all transmitted data with the session key.

EZRack
PLC

Broker

395

Example of how keys work and protect from spying on your connection:

Diffie–Hellman Key Exchange is the concept that explains how keys work without a Listener being able to

decrypt the message. The following examples are commonly used to explain this concept.

Cryptographic Example:
The simplest and the original implementation of the

protocol uses the multiplicative group of integers

modulo p, where p is prime, and g is a primitive root

modulo p. These two values are chosen in this way

to ensure that the resulting shared secret can take

on any value from 1 to p – 1.

EZRack PLC and Broker agree to use a modulus p =

23 and base g = 5 (which is a primitive root modulo

23).

EZRack PLC chooses a secret integer a = 4, then

sends Broker A = ga mod p

A = 54 mod 23 = 4

Broker chooses a secret integer b = 3, then sends

EZRack PLC B = gb mod p

B = 53 mod 23 = 10

EZRack PLC computes s = Ba mod p

s = 104 mod 23 = 18

Broker computes s = Ab mod p

s = 43 mod 23 = 18

EZRack PLC and Broker now share a secret (the

number 18).

Both EZRack PLC and Broke have arrived at the same

value s, because, under mod p,

𝐴𝑏 𝑚𝑜𝑑 𝑝 = 𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝 = 𝑔𝑏𝑎 𝑚𝑜𝑑 𝑝 = 𝐵𝑎 𝑚𝑜𝑑 𝑝

More specifically,

(𝑔𝑎 𝑚𝑜𝑑 𝑝) 𝑏 𝑚𝑜𝑑 𝑝 = (𝑔𝑏 𝑚𝑜𝑑 𝑝) 𝑎 𝑚𝑜𝑑 𝑝

Note that only a, b, and (gab mod p = gba mod p) are kept secret. All the other values – p, g, ga mod p, and

gb mod p – are sent in the clear. Once EZRack PLC and Broke compute the shared secret they can use it as

an encryption key, known only to them, for sending messages across the same open communications

channel.

EZRack
PLC Broker

Listener

EZRack
PLC

Broker Color Example:

396

11.3.2 EZRack PLC Encryption and Certificate Authority Setup:
To setup the EZRack to use encryption follow the directions below:

1. To setup encryption you will need to go to the Sparkplug Setup (Setup > Sparkplug

Setup…) and then to the Brokers tab.

2. Now add a new broker or edit the current broker.

3. In the Port Number you will need to change it to the port used for SSL security. The

Ignition SSL secure port is 8883.

4. For TLS Version Number select the newest that is supported by your broker. Most

brokers should be able to use TLS version 1.2.

5. Next in the Certificate Authority (provided by broker), find and select the file in your

local directory.
a. You can also select the checkbox next to Check Server Hostname. If you do check this

make sure to enter your hostname in Broker Name field. With this box checked the

Server Certificate will be checked to make sure that the hostname matches.

6. Finally click the Update Selected Broker button.

7. The EZRack will now use TLS (SSL) secure communication and check the Certificate of

the broker.

397

11.3.3 Ignition Encryption and Keystore Setup
To setup the Ignition MQTT Distributor Module to use encryption follow the directions below:

1. Go to localhost:8088 and Log into your Ignition Software. Note: This assumes you have

already setup the Ignition platform and MQTT Modules setup.

2. Go to the Configure tab and select MQTT Distributor > Settings.

3. Under General the TLS Configuration will need to be enabled. You can also at this point

change the secure MQTT port if you want.

4. Next you will need to provide a Java Keystore file to the Distributor. This Keysore will

include the Certificate for the Broker and the Key pair of public and private key for the

Broker. Use the Choose File option and navigate to the Keystore to select it.

5. You also need to enter the Keystore Password in the field above the File.

6. Finally click the button to Save Changes. The MQTT distributor will now have TLS (SSL)

Security and Authentication Enabled.

The EZRack and MQTT Distributor should now be able to communicate over the secure MQTT

port.

http://localhost:8088/main/web/home?11

398

11.4 Redundancy Setup (EZRack PLC and Ignition):

The EZRack PLC supports a redundancy backup system of Brokers. What this means is that the

Broker tab allows the user to input up to 4 different Brokers. If more than one broker is setup

and the EZRack cannot connect to the first Broker it will cycle through the rest of Brokers and try

to connect to them. This makes sure that the EZRack will be connect even if a Broker fails.

The EZRack also supports the Redundant Ignition Environment. To learn more about the Ignition

Redundant Environment you can visit Cirrus Link website and their help documentation. This

environment is setup to have a failover backup for the primary/master ignition instance. It also

lets the EZRack know that it has moved to the backup through the Primary Host ID.

To setup the Redundant Ignition Environment on the EZRack you will only need to input the

Primary Host ID from the MQTT Engine Settings. The Primary Host ID which is used to ensure

client to client communications. The only requirement is that it match exactly on both the

MQTT Engine and EZRack configurations. Also you will need to ensure that both the Master and

Backup Brokers are listed in the Brokers tab.

Cirrus Link Documentation:

https://docs.chariot.io/display/CLD/Advanced%3A+MQTT+Modules+in+Redundant+Ignition+Environment

https://docs.chariot.io/display/CLD/Advanced%3A+MQTT+Modules+in+Redundant+Ignition+Environment
https://docs.chariot.io/display/CLD/Advanced%3A+MQTT+Modules+in+Redundant+Ignition+Environment

399

11.5 Store and Forward Setup:

The EZRack PLC supports “store & forward” for approximately 500 past historical values in a First

In, First Out (FIFO) format. This is used in conjunction with the Ignition Historian databases. If

the EZRack ever were to lose connection with all the Brokers it will retain all the needed

Sparkplug Ignition MQTT information that can be later forwarded to the Ignition Software after

connection is reestablished. This information is battery backed up so that it can be retained over

a power cycle as well.

Store and Forward works with a GMT (UTC) to make sure that information is slotted into the

right location. Therefore please use the _SR_TIME_ZONE system register to set the time zone

you are in. Please see the next paged on how to do this correctly. Note: System Registers are not

retentive over a power cycle.

To setup Store and Forward for tags please follow the directions below:

1. Please go to your Sparkplug Setup > Publish Tags tab.

2. For any tag you can select it and click the Enable Store option.

3. After this option is clicked the EZRack will store tag data if the Broker connection is lost.

When the Broker reestablished all the changed information with time and date stamp,

the data will be sent to the Ignition software.

400

11.5.1 Store and Forward Time Zone Setup

When the EZRack PLC has to store and then forward the information, the time stamp used with

the Ignition software needs to be in GMT (UTC). The EZRack Time and Date is setup to be used in

your current time zone and therefore for the Store and Forward to work correctly the different

from GMT needs to inputted into the System Register _SR_TIME_ZONE (SR29). Please see

directions below about setting this up correctly.

1. To setup the Time Zone, please first go to a website like

https://www.timetemperature.com/ to figure out your time zone. Some basic time

zones are mentioned below.

2. Convert the hour time zone difference to minutes. For example if for Central time of -6

hours, please use -360 minutes.

Time Zone GMT time
offset (UTC)

Number to Enter into
_SR_TIME_ZONE (SR29)

Eastern Standard Time (EST) - 5 hours -300

Central Standard Time (CST) - 6 hours -360

Mountain Standard Time (MST) - 7 hours -420

Pacific Standard Time (PST) - 8 hours -480

Middle European Time (MET) + 1 60

Indian Standard Time (IST) + 5.5 330

China Standard Time (CST) + 8 480

Australian Eastern Standard Time (AEST) + 10 600

3. Next create a first scan rung with a Move Data instruction.

4. If you do not need to set this external (ex: from HMI) then you can set the Move Data

Instruction to move the constant value selected above to the System Register. Note:

System registers are not retentive over a power cycle.

https://www.timetemperature.com/time-zone-maps/large-world-time-zone-map.shtml

401

5. If you need to set it externally, please use a Register tag to store the value and move

this value into the _SR_TIME ZONE upon power up. Please note that you should set the

System Register from the HMI and then have an instruction to store the value into a

register like below.

402

11.6 Troubleshooting Sparkplug B Setup:

This section will outline some basic EZRack PLC Sparkplug B troubleshooting tips. The EZRack PLC has

some System Discretes and System Registers to help figure what might be causing your problem.

System Discretes

System Discretes Name
System

Discretes
Description Read/Write

_SD_SPARKPLUG_CONFIG_ERROR SD29
This bit will turn on if the Sparkplug configuration has
an error.

Read Only

_SD_SPARKPLUG_PUBLISH_ERROR SD30
This bit indicates if the EZRack PLC is not able to
publish a message to the broker.

Read Only

_SD_SPARKPLUG_RUNNING_STATUS SD31
This bit is ON if the Sparkplug MQTT is connected to
the Broker and publishing correctly.

Read Only

System Registers

System Register Names System Registers Description Read/Write
Data
Type

_SR_TIME_ZONE SR29
This register is used to set the
timestamp of messages to correspond
to GMT (UTC).

Read/Write S16

_SR_SPARKPLUG_CURRENT_BROKER
_INDEX

SR30
If multiple Brokers are defined this
register will indicate which broker is
connected (0-3)

Read Only US16

_SR_SPARKPLUG_STORE_FORWARD_
FIFO_COUNT

SR31
When Store and Forward is enabled
this will indicate how many tag
updates are stored

Read Only US16

_SR_SPARKPLUG_TASK_COUNTER SR32
Each time that Sparkplug
communication is initiated this
counter will increment.

Read Only US16

Troubleshoot Tips

Error Suggested Solution

Configuration Error (SD29 is ON)
This suggested that your configuration on the Sparkplug setup is
incorrect. Recommend creating a simple Sparkplug program and seeing if
that works. Then work up to the project that caused this error.

Publish Error (SD30 is ON)

This suggest that broker is refusing EZRack MQTT messages. I would
check that the EZRack has permission to publish to those topics. Also I
would check the username and password of the EZRack PLC Broker sign
in. Also check that Client ID is unique.

Sparkplug Not Running (SD31 is
ON)

Please make sure that the Broker is accessible from the network the
EZRack PLC is on. Further check the username and password of the
EZRack PLC sign in. Also check that Client ID is unique. Finally if using TLS
security I would make sure that the CA is current and that the PLC time
makes the CA valid.

403

Error Suggested Solution

Store and Forward Not Working

Please make sure that the tags you would like to store are set to store
configuration. Also please make sure that you are setting the time zone
correctly so that store forward slots the information in the right time
slot. Note that ignition works of GMT (UTC) and not the current time
zone you are in.

EZRack connected to Broker but
Ignition is not seeing connection

Please make sure that the EZRack is connected to the correct Broker that
the Ignition software is connected to. Also please make sure that both
EZRack and Ignition have correct permissions with Broker (ACLs).

Non-TLS connection works but
TLS does not

Please make sure that the for TLS security you have included a valid
Certificate Authority and that the Time on the EZRack PLC has been set
so the CA is valid.

